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Abstract

In order to provide improved capabilities for predicting nonlinear

composite material behavior, a new three-dimensional micromechanical

model is presented. The model formulation is based on a unit cell or

representative volume element approach where the coupling effects be-

tween normal and shear stresses within the unit cell are relaxed. The

formulation lends itself very well to the inclusion of nonlinear behavior

while maintaining the three-dimensional effects.

The present capabilities of the model include both unidirectional and

laminated composite layups with various types of nonlinear analysis

such as a thermoelastic-plastic analysis employing the Prandtl-Reuss

flow relations, a thermoviscoplastic analysis using Bodner-Partom uni-

fled constitutive theory, and an interfacial damage progression scheme

based on a statistical interfacial failure criteria. Such nonlinearities are

critical factors during thermomechanical fatigue (TMF) loading of high

temperature composites.

Solutions were obtained and extensive comparisons performed with

existing micromechanics models, finite element analysis, and experiment

with excellent results. In addition, the analysis was developed to re-

quire minimal computer resources. For instance, the majority of prob-

lems may be accomplished on a personal computer in a matter of sec-

onds. Therefore, the present analysis represents a formulation that ac-

counts for many nonlinearities that heretofore have been very difficult

or in some cases impossible to perform with previous micromechanics

models or the finite element method.

xx



A NONLINEAR THREE-DIMENSIONAL MICROMECHANICS MODEL

FOR FIBER-REINFORCED LAMINATED COMPOSITES

1. Overview

1. 1 Introduction

Composite materials have been in the forefront of materials research

for many years. As a result, there has been much effort devoted to under-

standing the mechanics of composite materials at their constituent level.

This is usually referred to in the literature as micromechanics. Some ex-

amples where micromechanics have been utilized or proved useful are in

examining the stress field surrounding a fiber, or in modeling the propa-

gation of cracks through both matrix and fiber. Also, many efforts have

been made to calculate the constituent microstresses during processing of

these materials. Such studies have done much to advance science and

technology, resulting in improved composite materials. Also, a thorough

understanding of the basic mechanisms underlying their behavior and re-

sponse under different loading conditions has been achieved. In addition,

such understanding has led to micromechanical models which can predict

a composite material's behavior from the properties of its constituents.

The complexity of these models generally increases with the complexity

of constituent properties and applied loading.



Over the last several years, attention has shifted from the epoxy based

fiber reinforced composites, which are primarily used for low temperature

applications, to metal and ceramic based composites which possess great-

er promise for high temperature applications. In contrast to the epoxy

based composites, these high temperature materials present unique chal-

lenges for micromechanical modeling. For example, in metal matrix com-

posites the matrix may carry a relatively large percentage of the load, and

the thermal effects between fiber and matrix become significant due to a

mismatch of the thermal expansion coefficients along with greater pro-

cessing and usage temperatures. Also, nonlinear behavior in such materi-

als Is likely to occur, and the loading experienced by them during applica-

tion Is, in general, highly cyclic both mechanically and thermally. Hence,

fatigue failure is of primary importance.

The presence of all these mechanisms creates a difficult problem in

mathematical modeling. A micromechanical model that incorporates these

and other characteristics would be highly beneficial since it would pro-

vide a means of predicting the behavior of this class of composite. Of

equal Importance, such a model would furnish the ability for explaining

observed behavior in the laboratory and in predicting a composite

material's response under practical situations.

1.2 Background

Several micromechanical models have been proposed over the years,

but the majority of them possess the capability to model linear behavior

only. However, in recent years, a few nonlinear models have been pro-

2



posed that include elastic-plastic and viscoplastic matrix properties, e.g.

see Reference 1. These models are available as simple computer programs

which can run on a personal computer and provide reasonable predictions

for the nonlinear behavior of a given composite. The accuracy of each of

these models is dependent on their assumptions and the loading condi-

tions. In addition, the plasticity formulations employed in each of these

models generally consider only isotropic hardening.

However, only a single type of nonlinearity, such as plasticity with

isotropic hardening, does not provide enough flexibility for the complete

characterization of the material, especially in metal matrix composites

(MMCs), since different hardening characteristics are commonly observed

in these composites. Further, the available micromechanical analyses do

not consider any form of damage mechanisms. Such damage mechanisms

are of great concern in high temperature MMCs, and it would be advanta-

geous to develop a model that could incorporate many of these types of

nonlinearities (due to damage or material behavior). At present there is a

lack of such an analytical tool. Even the finite element method is lacking

in this area. This is partly due to its computational intensity which ex-

cludes all but very simple loading sequences. Also, it is very difficult to

go beyond the unidirectional composite laminates due to the extremely

complex grids required for multidirectional laminates. In addition, most

finite element programs do not allow for complex material hardening or

viscoplasticity.

3



1.3 Approach

The main objective of the present study was to formulate, develop,

and validate a nonlinear three-dimensional micromechanics model for

fiber reinforced composites which incorporates many nonlinearities previ-

ously unavailable with existing micromechanics models. Some of the ca-

pabilities of the proposed model include the effects of plastic and visco-

plastic characteristics with various types of hardening, the effects of

fiber/matrix interfacial failure and damage progression, and the effects of

various types of laminated composite layups. Also, the proposed model

calculates the three-dimensional stresses of the constituents by preserving

the three-dimensional Poisson effects. Therefore, a more accurate ap-

proximation of the stress field is obtained in the present formulation than

if the Poisson effects were ignored as in some of the previous models, e.g.

see Reference 1.

The capability to predict the effects of various types of elastic-plastic

or viscoplastic matrix material behavior on a composite's characteristics

is important when modeling MMCs. Many metal matrix composites show

promise for high temperature applications, and since most metals exhibit

elastic-plastic or viscoplastic behavior, it is important to understand these

effects.

In addition, the fiber/matrix interface is the first region where damage

is often observed during loading, especially in MMCs. Hence, a microme-

chanics approach, that properly models interfacial damage, will be very

useful in predicting the response of these composites. Also, an accurate

micromechanics model which incorporates the fatigue will greatly en-
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hance life prediction techniques of these composites for aerospace appli-

cations.

Furthermore, the present micromechanics formulation is extended to

include a nonlinear laminated composite analysis by employing the classi-

cal laminated plate theory assumptions . Although classical laminated

plate theory is a linear theory, the underlying assumptions may be extend-

ed in a nonlinear formulation that combines these assumptions with the

micromechanics relations.

Additionally, the proposed model is computationally efficient. This

is, no doubt, a subjective statement, but most of the analyses in this study

were performed on an Apple Macintosh IlIx computer in a matter of sec-

onds. Only some of the more extensive analyses involving fatigue of sev-

eral hundred or thousand cycles required the use of a workstation. Hence,

a computationally efficient general purpose nonlinear micromechanics

model that possesses much of the capabilities which are required to model

high temperature titanium-based MMCs is proposed.

A reliable micromechanical model with the ability to simulate various

nonlinearities and thermal effects would provide a useful tool for the

technical community by furnishing the capacity to predict the response

and behavior of metal matrix composites. The present study is focussed

in this direction. It will serve a useful role and provide relevant informa-

tion towards the efficient usage of the new class of titanium based com-

posites in advanced aerospace structures and engines such as are targeted

for the advanced tactical fighter and the national aerospace plane.

The formulation of a new micromechanical model, possessing the

above mentioned characteristics, is presented in the forthcoming chapters.



Its accuracy and potential for greater use is demonstrated, and the com-

plete development of this model which includes the above mentioned ca-

pabilities is established.
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11. Perspective

2.1 Motivation

Reliable prediction of a material's behavior is closely tied to a strong

understanding of what occurs at the microscopic level. The mechanisms

acting and degree to which they effect a given composite must be ascer-

tained if the overall material's characteristics are to be understood.

The recent technological push for improved high temperature materi-

als has resulted in new classes of composites (e.g. fiber reinforced titani-

um matrix composites) being brought to the forefront of composite re-

search. Such composites are subjected to severe thermal as well as me-

chanical loads. Further, due to the mismatch of the thermal expansion co-

efficient between the fiber and matrix, thermal residual stresses are

present in the composite which become a significant factor in the compos-

ite material behavior. In addition, the higher temperatures will have a

strong effect on the viscoplastic behavior of metal matrix composites.

Phenomena such as these produce many questions. For example, how

does the progression of damage along the interface affect the composite,

and how can it be modeled? Also, how does the viscoplastic characteris-

tics of the matrix affect the relaxation of the thermal stresses both during

processing and usage? Questions such as these can only be answered after

extensive analytical and experimental work.

Accurate micromechanical models will provide the analytical tools

needed to address the characteristics of high temperature composites and

make it possible to explain laboratory observations. This will provide a
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better understanding of high temperature composites, which will in turn

lead to improved materials.

2.2 General Micromechanics

Many micromechanical theories have been proposed over the years,

and before attempting a micromechanical analysis it is beneficial to pos-

sess an overall view on both closed form and numerical methods that have

been used in the past.

Chamis and Sendeckyj provide a good summary on various techniques

in micromechanics (2). They divide the approaches into netting analyses,

mechanics of materials approaches, self-consistent models, variational

techniques using energy bounding principles, exact solutions, statistical

approaches, discrete element methods, semiempirical approaches, and mi-

crostructure theories. Many of these approaches are summarized by

Jones (3). Except for the first two, all approaches use at least some of the

elements of the theory of elasticity.

The self-consistent model is based on two assumptions (4). First, the

free strain of an inclusion is linearly related to the constrained strain of

the same inclusion embedded in an elastic body. Also, the strain is as-

sumed constant in the inclusion. These two assumptions provide a means

of determining the effective material properties. Gramoll, Freed, and

Walker provide an excellent summary of self-consistent techniques and

how they may be applied to inelastic materials (5).

Energy principles have been used extensively to achieve general

bounds on the elastic properties (6). Most new micromechanical models
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are compared to these bounds as a means of evaluating their effectiveness.

If the model produces properties that lie outside these bounds, then its ac-

curacy in that area is questioned.

Elasticity solutions have also been used to predict material

behavior (7). Several simplifying assumptions are generally necessary

when using elasticity solutions. For instance, no interaction between the

fibers is assumed to exist, and therefore, the problem reduces to a single

fiber or inclusion embedded in an infinite matrix as solved by

Muskhelishvili (8). Such methods provide insight into the stress and

strain field surrounding a fiber, but fail to produce reliable predictions of

the overall composite response.

Another example of an elasticity solution is a circular concentric cyl-

inder model proposed by Pagano and Tandon (9-12). With this model a

study of interfacial debonding was performed. Complete separation was

modeled by replacing the fibers with cylindrical voids, and a slipping

condition was simulated by forcing the shear traction at the interface to

vanish.

Also, a very useful set of equations for overall stiffness were devel-

oped by Halpin and Tsai (13). Their result is a good approximation to the

self-consistent model in the transverse direction without the complexity.

Overall stiffness properties may be obtained quickly and easily from rela-

tively simple equations. In the Halpin-Tsai equations a single parameter

is used to incorporate fiber geometry, packing geometry, and loading

conditions. The value of this parameter must be assessed by relating the

equations to exact solutions. In addition, no fiber or matrix stresses are

determined, only overall stiffness properties.

9



Micromechanical analysis generally requires assuming a regular array

of fibers distributed in the matrix. After assuming a fiber array, a single

repeating cell or representative volume element (RVE) is isolated, and the

response of the RVE is assumed to represent the overall composite re-

sponse. In doing this the analyst has taken a completely random distribu-

tion of fibers and assumed it to be ordered. The influence of random fila-

ment packing on transverse stiffness was examined by Adams and

Tsai (14). They studied two types of random arrays: square and hexago-

nal. The arrays were not entirely random since they still contained re-

peating units of several fibers. Regardless, res a indicated that a ran-

dom hexagonal array analysis agrees more closely with experiment than a

square random array analysis. This confirms the notion that a hexagonal

array seems more physically realistic. On the other hand, with an analysis

which is not random, the square fiber array tends to agree more closely

with experiment. In addition, a square array possesses greater flexibility

by allowing for two independent dimensions in defining a unit cell while

the hexagonal array contains only one dimension. Therefore, since most

analysis assumes a repeating regular array of fibers that is not random, a

square array is more widely used.

Many studies have been done using numerical approaches to obtain

discrete approximations to the elasticity equations. Foye was one of the

first to use a iidte element approach with a regular square array of fibers

to analyze the transverse properties of a unidirectional composite (15).

Subsequently, Adams and Doner analyzed longitudinal shear as well as

transverse normal loading of a unidirectional composite using a finite dif-

ference technique (16, 17). Stress concentration and stiffness were ana-
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lyzed as functions of fiber volume fraction, constituent stiffness ratio, and

fiber shape. Later Adams used a nonlinear material analysis to analyze

transverse normal loading (18). A plane strain finite element scheme was

incorporated to obtain the stress field throughout the matrix, but the

greatly increased computational requirements resulted in only a limited

amount of data being produced.

A rudimentary crack propagation scheme utilizing the finite element

technique to model failure in the matrix around the fiber during transverse

loading was proposed by Adams (19). Once an element reached a critical

octahedral shear strain for failure, its stiffness was reduced to zero. Of

course, such a scheme is not entirely accurate since it produces relatively

large gaps in the material after failure of a matrix element. Also, model-

ing crack propagation in such a discrete fashion resulted in a highly irreg-

ular transverse stress-strain response. However, the results tended to

bound the experimental data, but not in a way that could be easily predict-

ed. In addition, it was only capable of a monotonically increasing load.

These and other models have been used in the past to model fibrous

composites undergoing simplistic loading and possessing linear or modest

nonlinear behavior. However, various nonlinearities can occur in some

composites under complex loading conditions that must be accounted for

if a reliable prediction of the material behavior is to be achieved.

2.3 Composite Nonlinearities

Many types of nonlinearities can develop in a composite material, and

it is convenient to classify them into separate categories as shown in
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Figure 1. A micromechanical model that accounts for each effect sepa-

rately would have the greatest chance of success. However, developing a

reasonable model for each type of nonlinearity can be difficult, and ac-

counting for their combined effects on the composite can present a chal-

lenging bookkeeping problem. In addition, these analyses are load and

time history dependent. Therefore, a balance must be achieved between

developing reasonable models for the individual effects and maintaining

mathematical simplicity to make the problem a solvable one.

Another characteristic in high temperature composites which must be

accounted for is the thermal residual stresses present in the fiber and

matrix. These stresses are a result of the coefficient of thermal expansion

mismatch between the fiber and matrix. Hence, during cooldown after

processing or while experiencing thermal loads the composite will sustain

- .X.

.. . ..• "%%"

Inte.facial atrix M'atrix
Debond Fiber Cracks Viscoplastic

Cracks Behavior

Figure 1. Examples of Nonlinearities that Can Develop in Fibrous

Composites
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residual stresses both longitudinally and transversely (Figure 2). The re-

sidual stresses can at times exceed the matrix yield stress, and must be

properly modeled if gross errors are to be avoided (20).

The coefficient of thermal expansion mismatch produces relatively

large stresses at the interface which coupled with applied mechanical

loading can result in interfacial debond. The integrity of the interface has

a profound effect on the composite behavior, and there have been many

studies into how it influences the composite. A good sample of some of

the previous research in this area is given in references 21-25.

A debonded interface coupled with thermal residual stresses due to

cooldown results in a transverse composite response that is bilinear in na-

ture. This was observed experimentally by Johnson et. al. (26). A dis-

tinct *knee' in the transverse load-displacement curve occurred. It was

postulated that the compressive thermal residual stresses at the interface

kept the fiber and matrix in contact until a sufficient load was applied to

overcome them, and a weaker modulus existed after fiber/matrix separa-

Figure 2. Residual Thermal Stresses Due to Coefficient of Thermal
Expansion Mismatch
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tion resulting in the approximate bilinear behavior. Some analytical stud-

ies have also been performed to confirm this behavior (20, 27).

In actuality, the interface consists of a third phase zone that possesses

distinct properties from either the fiber or matrix. This zone comprises

imperfections due to absorption and reaction of the two constituents,

voids, imperfect adhesion, and microcracks. Some researchers have at-

tempted to model these imperfections by incorporating a thin interphase

zone layer that possesses a relatively low yield stress (28). In this meth-

od the plastic properties may be varied to match a particular interphase

zone's behavior.

Since the load transfer between fiber and matrix depends on the

strength of the interface, the thermomechanical properties of the compos-

ite are strongly affected by its integrity. However, due to high tempera-

ture processing and the constituents involved, the effect of the interphase

zone in high temperature metal matrix composites is amplified. There-

fore, even though an accurate representation of the zone is very complex,

incorporating its effect into a micromechanics model is necessary for such

composites.

In addition to the interface, nonlinearities in the composite can result

from the plastic or viscoplastic behavior of the matrix (29). There have

been several attempts at modeling a composite that exhibits plastic behav-

ior. An orthotropic plasticity model has been proposed by Sun and Chen

that assumed negligible plasticity in the longitudinal direction and incor-

porated a single parameter flow rule (30). Subsequently, Sun and Chen

developed a simple micromechanical model to describe the elastic-plastic

behavior of fibrous composites (31). The off-axis stress-strain curves
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from the micromechanical model were used to evaluate the macroscopic

orthotropic plasticity model Sun and Chen had earlier developed. In addi-

tion, Sherwood and Boyle analyzed viscoplastic behavior using a unified

state variable model and the finite element method, and compared the re-

sults with that of an elastic-plastic material model (no time dependence)

(32).

2.4 Existing Models

In spite of the several previous studies that have been done to analyze

the specific aspects of nonlinear behavior of composite materials, only a

few nonlinear micromechanical models have been developed to the point

of being able to solve broad-based problems of various types of loadings

or laminate analysis. These models are available to the scientific commu-

nity in the form of usable computer programs. Among these are the van-

ishing fiber diameter model proposed by Bahei-El-Din (33-36), the multi-

cell model proposed by Hopkins and Chamis (37, 38), and the method of

cells model proposed by Aboudi (39-43). Each of these models possess

similar capabilities in that they model the effects of elastic-plastic or vis-

coplastic matrix behavior on the composite, but they differ greatly in

method of approach and complexity.

The vanishing fiber diameter model is the simplest of the three and is

essentially the rule of mixtures mechanics of materials approach. Howev-

er, the additional assumption is made that the fibers possess a vanishingly

small diameter even though they occupy a finite volume fraction of the

composite. Hence, the fibers will not interfere with matrix deformation in

15



the transverse plane, and therefore the elastic rule of mixtures constitutive

relations for stresses and strains may be applied at all times.

This model is pictorially represented in Figure 3 where the unidirec-

tional ply may be regarded as transversely isotropic. The constitutive re-

lations for stress and strain as may be determined from the figure are

all - Vf Gllf + Vm (Flm (1)

=ij ' (Gij)f = (aij)m for (ij = II) (2)

ell = (Euu)f = (CIO)m (3)

Eij =Vf(Eij)f+ Vm(9 ij)m for (ij =I) (4)

.•...;.... •.. ".. ." . .

Figure 3. Vanishing Fiber Diameter Model
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where o represents tensorial stress, and e the tensorial strains in either the

fiber (subscript f), matrix (subscript m), or composite (overbar), and pos-

sess the appropriate subscripts denoting direction, and V represents the

fiber or matrix's respective volume fraction.

The vanishing fiber diameter model with elastic-plastic matrix charac-

teristics is the basis for the composite laminate computer program

AGLPLY (33). Subsequently, Bahei-El-Din extended this model to in-

clude thermoviscoplastic behavior. He described the inelastic strain rate

with a power law relation as a function of the overstress which is defined

as the difference between the current stress and the equilibrium stress

(quasi-static). The updated laminate code which includes the thermovis-

coplastic behavior is known as VISCOPLY (36).

Some of the drawbacks of the vanishing fiber diameter model are a di-

rect result of its simplifying assumptions. For instance, residual thermal

stresses in the transverse plane are not allowed and interfacial debonding

cannot be modeled. However, even though the assumptions of this model

may seem to oversimplify the problem, it provides a very computationally

efficient means of obtaining approximate results.

The multi-cell model proposed by Hopkins and Chamis represents a

one-dimensional analysis that unlike the vanishing fiber diameter model

still provides for fiber/matrix interaction. In this model it is assumed that

the fibers are evenly distributed in the matrix in a regular rectangular

array. Hence, a repeating cell or representative volume element (RVE)

consists of a single fiber and its surrounding matrix and interphase. The

response of the RVE is determined by dividing it into separate regions as

shown in Figure 4. Two of the regions contain matrix material only, and
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Figure 4. Multi-Cell Model

two more contain both matrix and interphase material, while a single re-

gion contains all three materials (matrix, interphase, and fiber). Each re-

gion is then modeled as a set of constituent rectangular cells of equivalent

area. No Poisson or shear effect coupling occurs between the regions.

Therefore, the tensorial stresses and strains completely decouple and may

be analyzed one at a time. For instance, solving for the transverse normal

response may be visualized by replacing each rectangle by an equivalent

stiffness. The response would then be modeled by a set of springs in se-

ries and parallel. The constitutive relations are too lengthy to list here,
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but a complete set may be found in reference (37).

Hopkins and Chamis's multi-cell model is the basis for the computer

code METCAN developed at the NASA Lewis Research Center. Nonlinear

thermoviscoplastic behavior is approximated through the use of power law

relations. In this method the ratio of the property of interest to a given

reference value is set equal to a product of terms with unknown expo-

nents. The terms consist of all values that the desired property might de-

pend on such as temperature, stress, stress rate, loading cycles, etc., and

the exponents must be determined either experimentally or estimated.

Such an approach does not constitute a true viscoplastic analysis but rath-

er a hypoelastic analysis where the elastic properties are varied to control

the nonlinear behavior.

The most complex of the models discussed in this section is the meth-

od of cells developed by Aboudi (42). As in the previous model, a regular

rectangular array of fibers distributed In the matrix is assumed. In addi-

tion, the fibers are assumed to possess a rectangular cross-section. There-

fore, the selected RVE positions the fiber in the comer of the RVE as op-

posed to the center (see Figure 5). The method of cells is a first order

theory, and hence, the displacement variation in each subcell is assumed

to be linear.

3
ui f ai + bi xj (5)

where the ui represent displacements, the ai and bij are constants, and the

xj are appropriate coordinates.
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Figure 5. The Method of Cells Model

Once the general form of the assumed displacement field in each sub-

cell is obtained, an appropriate set of equilibrium and continuity condi-

tions are sought. Each subcell possesses a total of twelve degrees of free-

dom, but in a traditional finite element approach a rectangular parallelepi-

ped element possesses twenty four degrees of freedom. Therefore, the fa-

miliar finite element method of satisfying continuity and equilibrium at

each node or corner cannot be used. Instead, continuity and equilibrium

are chosen to be satisfied on an average basis between subcells and neigh-

20



boring cells. For instance, the continuity condition at the interface be-

tween a fiber and matrix subcell is satisfied when the average displace-

ment of the fiber subcell at the interface matches the average displace-

ment of the matrix subcell at the interface.

The Aboudi model offers many advantages in that it is a full three di-

mensional analysis where Poisson and shear effects are included, and the

total degrees of freedom are half of what a comparable finite element ap-

proach would require. The main drawback of this method as opposed to

the finite element approach is that continuity and equilibrium are at times

violated. For example, overlap may occur between subcells where a por-

tion of the material from each subcell may occupy the same physical

space as indicated by the shaded regions in Figure 6, or unwanted gaps

Before Deformation After Deformation

fm

m m

Figure 6. Pictorial Description of Continuity Condition in the Method
of Cells Model
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may occur.

A strong plus for Aboudi's model is that since it is a full three dimen-

sional analysis, many well known nonlinear material analysis methods

may be used such as the Von Mises yielding and Prandtl-Reuss flow rules.

Also, the unified viscoplastic theory of Bodner is incorporated to model

time dependent behavior (44). The EPC computer code is based on

Aboudi's model, and is capable of determining composite yield surfaces

and nonlinear response. However, at present, the plasticity analyses are

limited to isotropic hardening. Also, interfacial debonding is allowable

only if the material is linear.

In summary, the Aboudi model is the most complete in that it is a full

three-dimensional analysis, but it's main drawbacks are its mathematical

complexity and that it allows material overlap and gaps near the interfaces

between neighboring cells and subcells. Bahei-El-Din's vanishing fiber

diameter model is a one dimensional analysis and Is the simplest of the

three where it assumes that no fiber/matrix interaction occurs in the trans-

verse plane. The model proposed by Hopkins and Chamis is also a one di-

mensional analysis but allows for some transverse fiber/matrix interac-

tion. Also, these last two models fail to account for Poisson effects which

can be significant under the generalized plane strain boundary condition

and especially during plastic deformation where the Poisson ratio is gen-

erally assumed to be one-half. In addition, none of these models at

present possess the capability to model progressive interfacial damage.

Therefore, to account properly for interfacial failure and debonding as

well as the elimination of some of the main drawbacks of the above mod-

els, a new model must be sought. The present study develops such a
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model and validates its capabilities. The following chapters elucidate the

theory and formulation of this model.
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III. Basic Micromechanics Formulation for
Unidirectional Composites

The basic formulation consists of a set of equations which define how

the constituent microstresses and strains are related to the composite

stress and strain. Much of the advantages or disadvantages of a particular

micromechanics model result from these basic equations. If the equations

are overly simplified, then much of the constituent interaction or three-di-

mensional effects are ignored to reduce the difficulty of the problem. On

the other hand, if the equations are too complex, then it may be impossi-

ble to perform a laminate analysis or add even rudimentary nonlinearities

because of the computational intensity. Therefore, a balance must be

sought such that appropriate constituent interaction and three dimensional

effects are accounted for while maintaining a formulation that allows for

the addition of various nonlinearities and its extension to analyze the lam-

inate.

An essential criterion in the formulation of the proposed model was to

maintain the full three-dimensional Poisson effects. In addition, it was

desirous to maintain continuity within the constituents of the model as

much as possible. In particular, no overlapping of material or unwanted

gaps were desired. This last criterion was chosen to ensure proper model-

ing of fiber/matrix debond which is likely to occur during interfacial dam-

age progression. Also, these capabilities were desired without the com-

plexity of the finite element method or Aboudi's model. Hence, the

present model was formulated to include all the major ingredients of a
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well balanced micrnmechanics model from constituent interaction and

nonlinearities to laminate analysis.

3.1 Model Description

Many of the assumptions that were used in the present formulation are

similar to those of previous models (33-43). For instance, a regular rect-

angular array of fibers distributed in the matrix is assumed. However,

symmetry is further assumed to isolate one-quarter of a unit fiber/matrix

cell as shown in Figure 7. Also, it is assumed that the matrix may be ade-

quately represented by a set of rectangular parallelepiped regions and the

fiber by a single prismatic region whose various edges are aligned with

the coordinate axes. The final assumption is the same as is made in both

the vanishing fiber diameter (33) and Hopkins and Chamis (37) models

which is that normal and shear stresses decouple in the equilibrium and

continuity equations, so any normal applied stress to the composite along

any of the three axes shown in Figure 7 will not produce shear stresses in

either fiber or matrix regions. These assumptions produce a model that

maintains the three-dimensional constituent stress interaction while allow-
ing for the inclusion of various nonlinear effects such as matrix plasticity

and interfacial damage.

Although any number of regions could be used in the formulation,

only two configurations for the present formulation with 4 and 8 regions

were employed in this study as shown in Figure 8. The fiber region di-

mensions are determined by approximating a quarter circle while main-

taining the proper fiber volume fraction. The dimensions of the remaining
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Figure 8. Region Configurations Employed for the Present Formulation
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matrix regions may then be determined once the RVE aspect ratio is

known. The formulation for the 4-region configuration will be presented

in this chapter while the governing equations for the 8-region model are

listed in the appendix. The vast majority of the results presented in the

later chapters were obtained with the 4-region model although a few re-

sults with the 8-region model are also presented for comparison. The for-

mulation becomes much more tedious with the 8-region model, and hence,

is too computationally intensive to be effective, especially for fatigue.

If a first order or linear displacement variation is assumed within each

region, then a constant stress and strain state exists within each region

and the remainder of the formulation may be achieved in terms of the

stresses and strains.

In addition, for any solid mechanics analysis, a choice must be made

as to whether to formulate the problem in a stress-based, strain-based, or

displacement-based system of equations. In the present formulation a

stress-based system was chosen. The advantage in choosing a stress-

based system is that their associated numerical algorithms tend to be fast-

er than in strain or displacement based systems. This is because calcula-

tions of the total strain are not required upon each iteration, but only once

the converged solution is achieved. On the other hand, strain-based sys-

tems must also calculate the stresses upon each iteration since the devia-

toric stress tensor controls the nonlinear behavior. The disadvantages of

choosing a stress-based system are that very few stress-based algorithms

have been published, and hence, they are not readily available. Also, they

are more unstable than strain-based algorithms.
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3.2 Governing Equations

The governing equations for the general response of a four-region mi-

cromechanics model as described in the previous section are now present-

ed. The model is depicted in Figure 9 where the composite applied stress

is indicated with an overbar. Also, in addition to the fiber and matrix re-

gions, two infinitely thin interfacial regions are included in Figure 9 so

that Interfacial effects can be accounted for. The total strain for each

fiber and matrix region may be partitioned into its elastic, thermal, and

inelastic components as follows:

19 + N +19(6)

If both the fiber and matrix are assumed to be transversely isotropic,

then upon employing the stress-strain and thermal expansion relationships

the total strain for each region is be given by

{2 S12 S2 S S23 02̀2 a + T AT e (7)

33rS SS12 S23 S22Ir (13r +a3 r e33)r

e12  r (S 12 r 12  (8

E13 r S44r Y13 r+ el3r (9)
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Figure 9. General Loading of the Micromechanics Model

3 r C22r523 r)023r+33r (10)

where the subscript, r, denotes the specified region, S represents the comn-

ponents of the region's compliance matrix that relates engineering stress
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to engineering strain, a is the coefficient of thermal expansion, and AT is

the change in temperature from the reference temperature. The above no-

tation was adopted to allow the usage of tensorial stresses and strains

while maintaining the vector transformation capability of the engineering

stresses and strains, and it is simply recognized that ij - 9i.

The effect of debonding on fibrous composite behavior may also be

modeled with the present micromechanics approach. Two types of deb-

onding occur at the fiber/matrix interface, separation and slip. The

present model accounts for both separation normal to the fiber and slip

longitudinally along the fiber by incorporating an interfacial compliance

along the two interfacial regions, I I and 12. The local separation and slip

displacement is controlled by the compliance and local interfacial stress

as follows:

a""atr (11)

0 nr<O

where 5 is the displacement, S8 is the interfacial compliance, and a is the

characteristic fiber dimension in Figure 9. The subscripts n and t specify

either normal (separation) or tangential (slip) directions, and the subscript

sep denotes the desired compliance after separation occurs. Also, the sub-

script r once again represents the appropriate region which in this case is

an interface region. Thus, in the normal direction the above equations

allow for an infinite stiffness in compression and either approximately
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zero or any other desired specified stiffness in tension.

The continuity conditions for any deformed body ensures that any

curve drawn through the undeformed body remains connected after defor-

mation (i.e. no gap is generated in the undeformed body). To meet these

as well as the equilibrium conditions completely would result in more

equations than unknowns. Therefore, some of these conditions must be

relaxed. In Aboudi's model the continuity conditions are relaxed by re-

quiring only the average displacement between adjacent regions to be

equivalent and employing the rule of mixtures to relate the composite

strain with the constituent strains. Such conditions allow for overlaps and

gaps in the material and couples the normal stresses in the 2-3 plane with

the shear stresses (see Figure 6). It is considered appropriate in the

present formulation to avoid these contingencies so that interfacial failure

and separation may be modeled with no undefined gaps in the material, so

instead, the no slip condition in the 2-3 plane between two adjacent re-

gions is relaxed. Therefore, the continuity conditions for the present for-

mulation may be simply stated as the average strain (length average) in

any of the three directions through the model regions is equal to the com-

posite strain for all except the shear strain, 92 3 , where the volumetric av-

erage (i.e. rule of mixtures) within the model is set equal to the composite

shear strain, E23- In addition, the normal strain in the fiber direction is

assumed to be the same for all regions, so a state similar to generalized

plane strain exists in this direction. These requirements lead to the fol-

lowing continuity conditions in terms of the strains:
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a £22 f + b11 + b £22mI a £22m3 + b E22m2 - (a + b) £22 (13)

a 633 f + 812 + c £33m3 - a E33mI + c 933m2 - (a + c) E33 (14)

'Etlf l f £ 11 m2 ' E11 m3 w E11 (15)

F12 f = E12 m3 (16)

£12 mI '£12 m2 (17)

a fl12 f + b F-12 ml - (a+b) ', 2  (18)

r13 f £ F-13 ml (19)

113 m2 i'13 m3 (20)

a £13 f + C £13 m3 - (a+c) '13 (21)

a2 r 23 f + ab e23 ml + bC £23 m2 + aC £23 m3 - (a+b)(a+c) £23 (22)

where the subscripts f, m I, m2, m3, I1, and 12 specify the respective re-

gion and a, b, and c are the characteristic dimensions depicted in Figure 9.

Equilibrium requires that the average stress through any cross section

of the unit cell is in equilibrium with the composite applied stress. Also,

the stresses normal to the internal faces of the unit cell are equivalent be-

tween adjacent regions. These requirements lead to the following condi-

tions for equilibrium:
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022 f - 022 ml (23)

0 22f 'lul (24)

0 22 m2 Y022 m3 (25)

033 f " CF33 m3 (26)

03-3" on12 (27)

0"33 m, ("33 m2 (28)

a0"22 MI + c0"(22 m2 - (a+c) ("22 (29)

a 0 3 3 m3 + b 0 33 m2 - (a+b) a33 (30)

a 2 oy f + ab oi( mi + bc Oi( m2 + ac (1I m3 - (a+b)(a+c) ill (31)

aO12f+ C a12 m3 a a0 12 Ml + C 0.12 .2 - (a+c) 0y12 (32)

a0"13 f+ b 0"13 ml = a0 13 m3 + b 0.13 M2 - (a+b) 013 (33)

(723 f = 0.23 mI 0m23 m2 " 0.23 m3 0 (923 (34)
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If Eqs (7) and (11) are substituted into Eqs (13-15), then by also em-

ploying Eqs (23-31) a general set of equations which relate the composite

applied normal stress to the normal stresses in each region may be ob-

tained. This relationship is given below in its general form for the state

of stress.
0

0

G fo

am1 0

(6 2  0
0[ 1 0m30

M Onj 0 (35)

14x23 1•I2 (aim- ald AT

a (a2m- a22 AT

Cm2  a(c3m- a3d AT

f=3 011
022

a33

where,

r 22] and 33r
193 lCJ (36

Equation (35) may be simplified by recognizing that a portion of the

forcing vector on the right hand side of the equation is always zero.

Hence, some beneficial matrix manipulations may be used. For instance,
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given a matrix equation of the following form

m [

where (x} and (0) are of length m, (yjis of length 1, and (f) is of length

n, then

(AJ(x) + [B](y) - (0) (38)

which implies that

(x) = -[A'I [BI(y) (39)

when the inverse of the matrix A exists. Also, from Eq (37)

[CI(x) + [DJ{y} - (f} (40)

Combining these last two equations yields

([D] - [C][A]'I[B])(y) - (f} (41)

Hence, Eq (35) may be reduced to the general form
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Ctf

011m1 (a1~clto S&l T

011, a(aim -ai AT
a3m a (a2m'-a2 AT

M2 0162 a(a-aAT (42)

'al

Separating out the inelastic strain terms and moving them to the right

hand side of the equation leads to

(a(m"%-c)AT
! 'l022t" aa2m" a2tf) A&T

Pllm al P 91 2 (4 3 )

6X6 033M - L. 6:9 R31
l~llm2 033

where the matrix P is given by
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SlIf SW S12m s 5"im "Sn 0

aS 12, aU aV R-aS12m -as&. R

aSU a(S2-S2) a(S,÷+Sk)-Q -aS2 Q-aS2 0
(44)

A AS 1lM A ASlm (a+c)

0 1 0 c Slm 0
(a+c)S2m (a+c)S12

0 0 a 0 b 0
(a+b) (a + b)

and the matrix PI by

-l 0 0 0 0 0 0 0 0

-4a+ b)$22M b 0 (a+ b)_•-2aS!2m -b 0 a!-2-M -a 0

S(2m ab m S11m 51m

0 0 -a c 0 -c - 0 c
Siiqfll 5 M (45)

0 0 0 ac 0 0 -ac 0 0
A S11 m A S11

c 0 0 . 0 0 0 0 0
(a+c)S (a+c)S

0 0 0 0 0 0 0 0 0
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The quantities A, U, V, R, and Q in the above matrices are defined by

,-(a+b)(ac) -S-S +S6 S- +S-S23m (46)
Slim

A - (a +b)(SlmaA 1~ + )U -S 2 2.(lV -S 16

) Qmc _S (47)

Once the region stresses in Equation (43) are determined through ma-

trix inversion, the remaining normal stresses in each region are found

from equilibrium between adjacent regions and continuity of the matrix

regions in the longitudinal or fiber direction. Thus, the remaining normal

stresses are given by

022all = 022f (48)

S11 
( 90 22,2"22mml, $ ( 11mi Gu 2) + .(4M Q(49)

On 11 - 022, (50)

033m2 - 0334m (51)

922m3 222m2 (52)

033m3 - 0 33f (53)

On 12 - 0 33f (54)
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Sli
O On_"lij. 3ýM(o33mf C33m) + ~ 4 )(5

The normal strains for each region are determined from Equation (7),

and the composite normal strains are determined from the continuity rela-

tions along the external faces of the analysis cell which results in

6 11 "1lf (56)

+ bb)22 m3
(a + b) ( -. m3b (57)

(a + c) ( 33ml (58)

The shear effects decouple from the normal stresses and strains and

from one another. Therefore, each set of shear stresses in a single direc-

tion may be solved separately. As mentioned, the equilibrium condition

requires that the average stress through any cross-section of the analysis

cell be equal to the composite stress. This along with the continuity con-

dition that requires the length average strain in any of the three directions

to be equal to the composite strain except for the shear strain, e23, where

the volumetric average is taken results in a set of equations which may be

solved explicitly. Hence, upon solving Eqs (8-10), (12), (16-22), and (32-

34) the resulting equations for the shear stresses in each region may be

written as follows:
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1+(l 2)e-•l (0

______2(___ - I
"-.c- 012s 2M

012i3 ta aU 8)](59)

[S4. - SWSa = ] [N4.+ r- SWO l-+)o12-ga +12m3 (60)

t U 12f(61)
0 13m2 -012+ S*Aj1+V(

Ca12l -(1+ iJi13 - C alin (65)

(66)
013-(1+ P013- m (65)

+ - o13f -b(67)
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(12: w -2M (123W2wG2W - 023"G (69)

The shear strains for each region are found from Eqs (8-10), and the

composite shear strains from Eqs (18) and (21-22). Hence,

E12 -- Il(a elz.++ b 1ef (70)
(a+b)

F-13 W (a 60 13 + C 13) (71)

923= a (a2 rn+ a b s 4+ b c +ac cn ) (72)(•b) (a+c) 94ml c

The above micromechanics formulation for unidirectional composites

has been employed to model the inelastic behavior of Metal-Matrix Com-

posites (MMCs) (45-48). These studies have examined the effects of plas-

ticity, viscoplasticity, and interfacial debonding on the composite's re-

sponse to various load and temperature time histories. In the following

chapters, the application of this model to such nonlinearities is presented

as well as the extension of the model to include progressive interfacial

failure (fiber/matrix interface possessing a finite strength) and nonlinear

laminate analysis. More theoretical development will be required at each

of these steps and is presented accordingly.
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IV. Elastic-Plastic Behavior

Several forms of inelasticity may be exhibited by various materials

such as plastic and viscoplastic behavior. In particular, most metals

demonstrate elastic-plastic behavior where as long as the material is

loaded below the yield stress, then it essentially behaves in a linear-

elastic fashion, but once the yield stress is exceeded then the material

becomes nonlinear. Many theories for plasticity have been proposed,

but the present study will focus on theories that have been classically

used with metals. For instance, the Von Mises yield criterion coupled

with the Prandtl-Reuss flow rule (49). Also, in this chapter it is as-

sumed that the nonlinear material properties are not dependent on time

(viscoplasticity). That topic is discussed later in the following chapter.

An advantage in choosing the classical elastic-plastic approach for

modeling nonlinear material behavior is that the required material con-

stants are generally readily available or determined from a simple ten-

sile test of the pure material. If the material is assumed elastic-perfect-

ly plastic, then the yield stress remains constant throughout loading and

will depend only upon temperature. Therefore, only a single parameter

(yield stress) is required to define the plastic behavior. On the other

hand, if the material is assumed elastic-plastic with work hardening,

then only two parameters are required (Figure 10).

An additional topic which will be discussed is kinematic hardening,

otherwise called the Bauschinger effect. The Bauschinger effect de-

scribes how some materials exhibit a shift of the yield surface origin in
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elastic-plastic with work hardening

H' - strain hardening parameter

H'I(1 +H'/E)
°ys

/ E elastic-perfectly plastic (H' - 0)

S

Figure 10. General Tensile Response of an Elastic-Plastic Material

stress space during plastic work hardening (49). An example is given in

Figure 11 where the effect of kinematic hardening is compared to isotro-

pic hardening. In isotropic hardening the yield surface expands while in

kinematic hardening it experiences a shift of origin. The effect of this

on the one-dimensional material response is to produce a yield stress in

compression that is different from that in tension (Figure 1l).

The present formulation will incorporate all these various plasticity

effects. In addition, a combined approach is presented where a parame-

ter between 0 and I is specified which controls the percent of hardening

due to kinematic effects. The basic plasticity relations, method of solu-

tion, and results are presented and discussed in the following sections.
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kinematic hardening -.

isotropic hardening - ays I

Figure 11. Kinematic and Isotropic Hardening

4.1 Plasticiy Relations

The Von Mises yield criterion states that plasticity occurs when the

second invariant of the deviatoric stress tensor, J 2 , reaches a critical

value. The deviatoric stress is defined by

a'.. - Oaj - k. -& (73)

where a'ij is the deviatoric stress and bij is the Kronecker delta. The

second invariant of the deviatoric stress tensor is given by
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J2 = °'ij °ij (74)

The above relation when coupled with the critical value for J2 con-

trols the yielding of an elastic-plastic material. However, once yielding

occurs, a relationship that describes the accumulation of plastic strain

during load must be specified. Such relations are known as plastic flow

rules, and for the present formulation, the Prandtl-Reuss flow rule which

is normally associated with the Von Mises yield criterion is assumed.

The Prandtl-Reuss flow rule states that the inelastic strain accumulated

during any load increment may be related to the preexisting inelastic

strain and the deviatoric stress as follows (49):

-j Ij d~ (75)

where

dej - (fq' dX, (76)

and 0el is the preexisting inelastic strain prior to the load increment

and dX is an incremental plastic multiplier.

Equations (73-76) are inherent to the elastic-plastic material ap-

proaches presented in this study. For instance, all the various types of

behavior such as elastic-perfectly plastic, elastic-plastic with isotropic

hardening, and elastic-plastic with kinematic hardening are accounted

for by only slight modifications to the above equations.
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4. 1.1 Elastic-Perfectly Plastic

A perfectly plastic material experiences no hardening, and therefore,

the yield stress remains unchanged throughout loading. Also, since the

yield stre.s is constant, then the critical value of J 2 for yielding is con-

stant and the yield surface remains fixed in stress space. However, rath-

er than continuing to use the critical falue of J 2 , if an appropriate quan-

tity is defined, then yielding in multi-dimensional stress space may be

discussed in terms of the yield stress. This quaxitity is termed the effec-

tive stress, oeff, and is defined by

a -ff F3_ (77)

or in terms of the principal stresses, al, v2, and a3 an

af-V1 [(1,. -(1)2+(,2-a) 2+,,a -o,1)] 2178)

Yielding occurs once the effective stress exceeds the yield stress.

Additional uses for the effective stress in materiai hardening are pre-

sented in section 4.1.2.

The yield surface may be visualized more readily in the principal

stress axes system since only three stresses are required (Figure 12). If

the full stress space is used, then either six or nine stresses are required

depending on whether one is working in engineering or tensorial stress

space. Further, by defining the variables given in Figures 12-15, the

yield surface may be represented in two dimensions. If the material is
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"sample stress history

S=(02-(F3)

Figure 12. Yield Surface and Sample Stress History for Elastic-Per-
fectly Plastic Material

loaded such that its stress lies within the yield surface, then the material

is elastic, but once it reaches yielding, then any further load increase

will result in the stress state simply moving along the yield surface.

Thus, the nonlinear solution is achieved by assuming lincar-elastic be-

havior until the condition eff 5 ay. fails. Then an iterative procedure

is used to solve for an appropriate value of the plastic multiplier, dX,

such that Oefr - Oys is satisfied.
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4.1.2 Elastic-Plastic With Isotropic Hardening

The solution sequence for an elastic-plastic material with strain

hardening is the same as for the perfectly plastic material except the

yield surface is no longer fixed in stress space but expands as the body

plastically deforms. This expansion is controlled by the strain harden-

ing parameter, H', which relates the incremental effective plastic strain,

deI, to the yield stress by (49)

do,
=--• H' (79)

eff

where del is defined by

Ief 2e~ d%1! (80)

In this material model the solid body is once again assumed to be-

have linear-elastically until the condition aef : a., fails. At this point

the yield surface expands according to Eq (79) as the body plastically

deforms. Hence, the solution is achieved by iterating around Eqs (73-

77) and (79-80), along with the equilibrium and continuity relations

until an appropriate plastic multijý!ier, dA, is found that satisfies all re-

quirements. The path an increasing load sequence might have in stress

space is presented in Figure 13. If the material is unloaded after plastic

deformation, then linear-elastic behavior persists as long as the stress
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sample stress history

(0103)

a2~ (02-0T3)

Figure 13. Yield Surface and Sample Stress History for Elastic-Plastic
Material With Isotropic Hardening

lies within the new yield surface.

4.1.3 Elastic-Plastic With Kinematic Hardening

Kinematic hardening is accounted for in a similar manner as isotro-

pic hardening except the yield surface origin is shifted (49) as opposed

to its size expanding (Figure 14). In the present formulation a combined

approach is presented where the percent of hardening due to kinematic

effects is specified, and the yield surface both expands and shifts during

plastic deformation (Figure 15). A kinematic hardening parameter, hD,

defined as a real number between 0 and 1 controls the percent of kine-

matic hardening, and the remainder is recognized as being due to isotro-
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Figure 14. Yield Surface Shift Under Kinematic Hardening

pic hardening. Hence a single set of equations may then be developed

that will allow both types of hardening.

To account for shifting of the yield surface a quantity which speci-

fies the origin of the yield surface is required. This quantity is termed

the back stress, flij, and is used to modify Eqs (74) and (76). Hence, Eq

(74) is modified to become

K2 ~ ~ ~ ~ I (oi- - o (3) j

where K2 is analogous to J2 , and Eq (76) becomes
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X 01 (-(3)

02" -02 - a3)

Figure 15. Yield Surface Shift and Expansion Under Combined Isotro-
pic-Kinematic Hardening

Also, the effective stress is now given in terms of the quantity, K2,

(Oeff '2 vr3-K2 (83)

and the increase in the size of the yield surface during an incremental

applied load as
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d03- (I-hD) (4)

dfeff 
(4

The shift in the yield surface origin is also controlled by the kine-

matic and strain hardening parameters and may be represented by

i 'V (85)

where the fVT3 results from the numerical factor in the definition of ef-

fective plastic strain.

Therefore, the above relations are used in a manner similar to that

described for isotropic hardening. During plastic deformation an appro-

priate value of d) is sought that satisfies all requirements. The next

section presents the numerical algorithm to solve for the nonlinear be-

havior of the micromechanics model. The algorithm was developed for

the combined isotropic-kinematic hardening relations, and it is simply

recognized that elastic-perfectly plastic behavior is achieved by setting

H'= 0, isotropic hardening is achieved by setting hD- 0, and pure kine-

matic hardening by setting hD- 1.

4.2 Elastic-Plastic Algorithm

A synopsis of the algorithm that was employed to solve for the elas-

tic-plastic behavior may be simply stated as initially assuming linear-

elastic behavior for the given load increment, and then measuring the
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distance between the resulting stresses and the yield surface. From this

distance an approximation for d& is made and the elastic-plastic rela-

tions are solved to achieve a new stress state. This iteration is contin-

ued until the d) produces a stress state that is within a user specified

tolerance from the yield surface.

Two problems must be guarded against when developing a stress-

based elastic-plastic algorithm. First, the amount of plastic strain accu-

mulated during a single load increment is not inherently limited as it is

in strain-based algorithms. Hence, stress-based algorithms are more un-

stable, and must be supported with appropriate damping mechanisms.

Also, if a plastic multiplier, dX, is chosen that is greater than required,

then the final stress state after the iteration may lie well within the yield

surface as opposed to the desired condition of lying upon it. Therefore,

this condition must also be checked at each iteration and recalculated if

necessary.

The following sequence of steps were used to determine the strain of

a single load increment and have been found to be very versatile in han-

dling the above mentioned conditions:

(1) For the first iteration assume linear-elastic behavior. Therefore

set the plastic multiplier for each region, r, to zero. Also, ini-

tialize the iteration counter, p.

0d~r = 0 and p =- (86)
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Iterate

(2) Solve for the stresses in each region using the incremental plas-

tic multiplier from the previous iteration and the micromechan-

ics relations.

(3) Determine the deviatoric stresses of each region for the present

iteration.

('YUr = PCIr - 8r7)

(4) Determine the effective stress.

PK 2  1 0, P- 41 (88)

Paeffr •- 3 FPK (89)

(5) Check for a converged solution by testing if the following con-

ditions are satisfied:

(a) For all regions check if

Peff 0 7'r (90)

(b) For regions that have previously yielded during this load

increment check if
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I>Fad, (91)

where Fact, is a user supplied tolerance.

(6) If the conditions of step 5 are satisfied, then stop iteration and

calculate the region and composite strains. If the conditions are

not satisfied, then continue iteration.

(7) Estimate the incremental plastic multiplier for the yielded re-

gions.

Par- (ei- a+Hqr) (92)

where Fact 2 Is a user supplied value that controls the instability

and rate of convergence.

(8) Calculate the incremental inelastic strains.

P443ir - (PO"iJr -~~ "'h J rd (93)

(9) Calculate the effective inelastic strain increment.

"d r " ± PK2 r Pdr (94)
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(10) Calculate the change in the back stress.

PJr +P11- h÷ H', P (95)

(11) Compute the change in the yield stress.

%P'sr -P'P- y5r +(I - D)H'r P rdf•rr (96)

(12) Set p-p+ 1 , and continue steps 2 through 12 until the condi-

tions of step 5 are satisfied.

The above algorithm was found to be very robust at handling various

types of mechanical and thermal loads, and for most calculations, the

user supplied constants, Fact I and Fact 2, were given values of 0.005

and 1.0, respectively. A few of the calculations required either a modi-

fication from these initial values or a decrease in the size of the load in-

crements to achieve convergence. Also, solutions were for the most part

obtained in a matter of seconds on an Apple Macintosh lIx desktop com-

puter.

4.3 Elastic-Plastic Results

In this section results from the present formulation are put forth and

compared to published data from other models, finite element solutions,

and experiments (45, 46). The purpose being to determine if the simpli-

fying assumptions of the model are valid. First, linear-elastic results are
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presented followed by nonlinear elastic-plastic solutions. The linear-

elastic cases will demonstrate the model's capability for determining a

composite's thermoelastic properties and constituent microstresses.

Nonlinear elastic-plastic results will analyze the model's ability to cap-

ture the composite response to both thermal and mechanical loading and

also demonstrate the effects of variation in the hardening condition from

isotropic to a kinematic type. Also, whenever it is appropriate the mate-

rial properties used in the model are considered functions of tempera-

ture.

Bigelow, Johnson, and Naik have compared various micromechanical

models (1). The published data from their study along with calculations

using the present analysis are presented in Tables I and 2 for the ther-

moelastic properties of Boron/Aluminum 6061-TO and SCS-6/Ti-15-3.

The constituent properties as listed in reference I were used in the cal-

culations to provide for the direct comparison. The AGLPLY computer

Table 1. Unidirectional Laminate Properties for Boron/Aluminum as
Calculated by the Present Model and Published Data from
Existing Models and Finite Element Solutions (1)

EI(GPa) E2 (GPa) G 12 (GPa) v 12 al(xlO' 5 /C') a 2(xlo05 /CO)

AGLPLY 218 118 42.1 0.240 0.824 1.77
EPC 219 132 49.0 0.233 0.860 1.67

METCAN 218 127 49.2 0.240 1.010 1.54
F.E. 217 146 --- 0.230 0.871 1.64

4 - Reg model 219 144 55.6 0.233 0.860 1.67
8 - Reg model 219 149 56.1 0.228 0.879 1.63
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Table 2. Unidirectional Laminate Properties for SCS 6 /Ti-15-3 as
Calculated by the Present Model and Published Data from
Existing Models and Finite Element Solutions (I)

EI(GPa) E 2 (GPa) G 12 (OPa) v12 al(xlO5/') a 2(xlO05 1C")

AGLPLY 191 130 45.4 0.325 0.630 0.846
EC 192 139 48.5 0.322 0.634 0.828

METCAN 192 134 48.5 0.324 0.691 0.776
F.E. 192 148 --- 0.321 0.637 0.828

4 - Reg model 192 147 55.4 0.322 0.634 0.828
8 - Reg model 193 149 55.2 0.321 0.638 0.823

program utilizes the vanishing fiber diameter model of Bahei-E1-Din

(33), and the EPC program utilizes Aboudi's method of cells

approach (42). A trend in the calculations of the transverse normal mod-

ulus, E2, and in-plane shear modulus, G 12 , is noted where the present

approach yields values on the order of 5-15% stiffer than some of the

existing micromechanics models. Nevertheless, when compared with the

finite element solutions for transverse normal modulus, E2, the present

analysis agrees quite well. If the finite element results are assumed to

be closer to the true solution as one might expect, then the present ap-

proach seems to provide an accurate representation of the transverse

normal response. However, no finite element value for in-plane shear

modulus was available in Bigelow, Johnson, and Naik's study. There-

fore, to further evaluate the observed difference in in-plane shear modu-

lus between the present model and the other listed models, a comparison

of the in-plane shear modulus from the present approach, METCAN, and
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the finite element solution of Crane and Adams for Glass/Epoxy unidi-

rectional composite (50) was made (Table 3). The constituent properties

used in the calculations were obtained from reference 50. Again, the

present formulation provides a very good agreement with the finite ele-

ment solution. Also, very little change in the calculated properties is

noticed in going from the 4-region to the 8-region model. In fact, when

compared with the finite element solutions, the greatly increased com-

plexity of the 8-region model offers no noticeable improvement over the

4-region calculations.

Figures 16-19 display results for unidirectional Graphite/Epoxy at

various fiber volume fractions. The present approach is compared to the

method of cells and experiment (42). The same constituent properties as

were used in reference 42 were employed. The effect of fiber volume

fraction on the longitudinal modulus, the transverse modulus, the trans-

verse Poisson's ratio, and the in-plane shear modulus are depicted. For

this material the two analysis methods are indistinguishable when com-

puting either the longitudinal or transverse modulus except for a slight

difference with the 8-region model at the higher volume fractions. For

Table 3. Longitudinal Shear Modulus of Glass/Epoxy at Room Tem-
perature Dry Conditions as Calculated by the Present Model,
METCAN, and Crane and Adams (50)

G1 2 (GPa)

METCAN 3.96
Finite Element 4.90

4-Reg Model 4.76

8-Reg Model 4.80
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Figure 16. Longitudinal Modulus of Graphite/Epoxy (42)
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Figure 17. Transverse Modulus of Graphite/Epoxy (42)
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Figure 19. In-Plane Shear Modulus for Graphite/Epoxy (42)
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in-plane shear modulus the present approach exhibits a modulus predic-

tion that is on the order of 10% higher than the method of cells, but both

models are within the scatter of the experimental data.

A comparison of stress calculations is demonstrated in Figures 20-23

where the effective stress, aeff, and the normal stress, 033, is presented

for a titanium based metal matrix composite after cooldown from an as-

sumed processing temperature of 1000°C to room temperature at 23°C.

Results from a three-dimensional finite element solution as well as cal-

culations using both 4 and 8 region micromechanics models are depict-

ed. The finite element solution was performed using the MSC/NAS-

TRAN code with 272 elements, and the constituent properties are listed

in Table 4 (28). Although any of the micromechanical models discussed

previously provide average stress calculations over a given region or

phase, and hence, attempting to determine the stress field by such mod-

els has limited usefulness, nevertheless, the data provided in Figures 20-

23 can furnish some insight into the overall residual thermal stresses in

the fiber and matrix. Figures 20 and 21 present the stresses after

cooldown only, and Figures 22 and 23 present the stresses resulting from

an additional 200 MPa transverse load along the 2-axis. The stresses

calculated by the present formulation were found to provide a good ap-

proximation to the average stress experienced by the equivalent areas in

the finely discretized finite element solution.

Several comparisons involving nonlinear results of the present meth-

od with the experimental data of Kenaga, Doyle, and Sun (5 1) for

Boron/Aluminum 606 1-TO have been performed. The constituent prop-

erties used for these calculations are given in Table 5. A zero stress
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Figure 20. Effective Stress Contours after Cooldown (1000 to 230 C)
from Finite Element Solution as Compared to 4 and 8 Region
Solutions from the Present Formulation (28)
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Figure 21. Normal Stress, a33, Contours after Cooldown (1000 to 23°C)
from Finite Element Solution as Compared to 4 and 8 Region
Solutions from the Present Formulation (28)
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Figure 22. Effective Stress Contours after Cooldown (1000 to 23°C) and
200 MPa Transverse Load from Finite Element Solution as
Compared to 4 and 8 Region Solutions from the Present
Formulation (28)
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Figure 23. Normal Stress, o33, Contours after Cooldown (1000 to 23°C)
and 200 MPa Transverse Load from Finite Element Solution
as Compared to 4 and 8 Region Solutions from the Present
Formulation (28)
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Table 4. Constitutive Properties Used for the Calculations of Fig-

ures 20-23 (Fiber Volume Fraction - 0.35)

E (GPa) v a x 10.6 (OC)-I

Matrix 100. 0.3 10.0

Fiber 400. 0.3 5.0

processing temperature of 3700C was assumed for the composite, and the

fiber volume fraction is 0.475. Also, a combined hardening approach

was assumed where 50% of the hardening takes place isotropically and

50% kinematically. The temperature at which mechanical loads were ap-

plied was assumed to be 210C. Figure 24 depicts the stress-strain pre-

dictions for a 00, and off-axis 100 and 200 lamina response. Calcula-

tions from both the 4 and 8 region micromechanics models are present-

Table 5. Constituent Properties for the Nonlinear Boron/Aluminum
Calculations (3 1)

Boron Aluminum 6061-TO

E (GPa) 379.3 68.3

G (GPa) 172.4 26.2

V 0.1 0.3

t (1/ 0C) 8.1x10" 6  23.xl0-6

Oys (MPa) 50.

H' (GPa) 1.17
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Figure 24. 00, 100, and 200 Off-Axis Predictions for Boron/Aluminum

ed, and in the same way as was observed in the linear-elastic cases, the

additional complexity of the 8-region model produced little or no change

in the overall response.

As to which formulation (4 or 8 region) is "better" at predicting a

composite's response, the conclusion is that there is no appreciable dif-

ference. For instance, when compared with the experimental linear-elas-

tic properties of Figures 16 through 19, the 8-region model seemed to

exhibit a slightly stiffer response at the higher fiber volume fractions

than observed in the experimental values. However, the analytical model

is incapable of accounting for existent damage such as voids. Voids are

more pronounced at the higher volume fractions since it is more difficult

68



for the matrix material to "wet" the fibers during processing. Therefore,

the micromechanics solution should tend to produce stiffer results in

comparison to its experimental counterpart; especially at the higher fiber

volume fractions.

Although this last statem-,nt is simply speculation, it is apparent

from experimental comparisons that the most one could say is that the

eight-region model offers no improvement, and that both are within the

scatter of the data. Rather than comparison with experiment, a more ac-

curate measure of whether the four or eight-region model is "better' may

be which model more closely approximates the solution to the mathemat-

ical problem defined by the unit cell approach. The exact solution to the

unit cell problem has not been found, but if we assume that 3-D finite

element results are a close approximation, then comparisons made so far

(see Tables 1-3) indicate that the eight-region model offers either no im-

provement or slight improvement. For instance, additional 3-D finite el-

ement results performed with the finite element model used in Figures

20-23 predicts a transverse modulus of 156.0 GPa. The four-region

model predicts 154.4 OPa and the eight-region model predicts 156.4 GPa

for the same composite.

However, since the level of improvement in going from four to eight

regions is small, and the mathematical complexity of the formulation is

greatly increased, then continuing to carry along the eight-region model

for other than comparison sake is questionable. Other researchers have

found similar characteristics in the Hopkins and Chamis model where in-

finitely increasing the number of regions offered Little or no improve-

ment (52). Therefore, except for Figure 25, the remainder of the micro-
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mechanics results were performed using the 4-region model.

Figure 25 presents comparisons between experimental results and the

present formulation based on both 4 and 8 regions for 00, and off-axis

angles of 30" and 600 ply layups. Again, there is little or no difference

between the 4 and 8 region models. In addition, the micromechanics re-

sults exhibit more of a bilinear response for the off-axis cases than is

observed in the experiment. Howtver, this is not surprising because the

nonlinear material model used in the micromechanics formulation as-

sumes an elastic-plastic billnear matrix material, and therefore, the cal-

culations will not be able to match exactly experimental results of com-

posites that possess a matrix material that exhibits behavior other than

bilinear elastic-plastic, so only general approximations of the experi-

200

00

120 0.0 0.004 - 600

Stresst"n (/rn)(MPa) / " "

Fu 2. ,A Pn f-Region

0 7
0 0.00 0.004 0.006 0.008 0.01

Strain (re/m)

Figure 25. 0*, 30*, and 60° Off-Axis Predictions for Boron/Alumi-
num (5 1)
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mental response is possible.

The cyclic response of a 0* Boron/Aluminum ply layup is presented

in Figure 26. The applied mechanical loading consisted of four cycles

to a maximum applied stress of 1310 MPa. The figure displays the cy-

clic data after completion of the initial cycle where both the microme-

chanics (4-region model) and experiment exhibit a material hysteresis.

The only means for energy absorption in the micromechanics model is

matrix plasticity, and therefore the material hysteresis observed in the

model must be due to matrix plastic flow. After four cycles the micro-

mechanics model indicated a shift of strain equal to only 0.000068

(m/m) from its original value at the zero stress state of the composite.

Also, it is worth mentioning that when complete kinematic hardening is

1400

1200

1000 /

800
Stress
(Mpg)

600

I-Micrornechanics

200

0 frI

0 0.002 0.004 0.006 0.008

Strain (n/n)

Figure 26. 0* Boron/Aluminum Cyclic Response to Mechanical

Load (5 1)
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assumed there is no shift in the zero stress strain state, but the calcula-

tions in the figure represent the results of assuming 50% of the harden-

ing takes place kinematically and 50% isotropically.

Figure 27 presents the results of a 90* lamina with periodic unload-

ing. In the calculations, the model was loaded until the strain at which

each unloading point in the experiment was achieved and then unloaded.

After four complete load and unload cycles the accumulated error in

strain at zero applied stress is less than 0.00004 m/m. In addition, the

micromechanics solution predicts the yield point and hardening charac-

teristics very well.

Further comparisons involving elastic-plastic results from the

present formulation as compared to results from other micromechanics

160 1 ,

Experiment --

120

Stress
(MPa) 80

40

0
0 0.001 0.002 0.003 0.004

Strain (m/m)

Figure 27. 90* Boron/Aluminum Response With Periodic Un-
loading (5 1)
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models are exhibited in Figures 28-30. For example, the 0* response of

SCS-6/Ti-15-3 at 650°C as calculated by the present formulation and the

VISCOPLY program which incorporates the vanishing fiber diameter

model (36) is displayed in Figure 28. The constituent elastic properties

used were the same as listed in reference 36, but since the plastic capa-

bility of VISCOPLY utilizes a power law relation to define the plastic

strain curve as opposed to the classical bilinear method, an appropriate

yield stress of 150 MPa for the matrix was chosen to model the plastic

behavior (53). Also, for this calculation the matrix strain hardening pa-

rameter was assumed to be zero. Excellent agreement between the two

analysis methods is demonstrated for the 0° layup.

Figures 29 and 30 present results for a graphite/aluminum unidirec-

tional composite layup undergoing a cooling and reheating cycle. The

1000 1 1

800 [- •Present Analysis "
---- VISCOPLY

600

Stress
(MPa)

400

200

0
0 0.002 0.004 0.006 0.008

Strain (m/m)

Figure 28. 00 SCS6/Ti-15-3 Predicted Response as Calculated by the

Present Formulation and VISCOPLY (36)
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-0.01 I

-0.008

-0.006
£22

_0.004

-0.002 -- oho el

0

0 100 200 300 400

Temperature (°C)
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present analysis is compared to Aboudi's method of cells, and the same

constituent properties as employed in reference 42 are used. The tem-

perature cycle consisted of cooldown to room temperature at 21 °C from

the stress free processing temperature of 37 1. 1 °C followed by reheating

to the processing temperature. The longitudinal composite strain histo-

ry, e11, is depicted in Figure 29, and the transverse composite strain his-

tory, E22, is displayed in Figure 30. The method of cells incorporates

the unified theory of Bodner and Partom to model material nonlinearity,

while the formulation presented in this chapter employs the classical

elastic-plastic technique. In spite of this as well as the differing as-

sumptions of the two models, the maximum difference in strain between

the two models at any given point throughout the loading sequence is

only 0.00008 m/in.

The capability for continuously varying the type of hardening from

isotropic to kinematic was included in the micromechanics formulation

developed in this chapter. An example depicting this effect of varying

the hardening is shown in Figure 3 1. The constituent properties and

temperature preload was the same as for Figures 24-27. A single ± 124

MPa loading cycle for a 900 lamina was performed for the three cases:

isotropic hardening, combined hardening (50% takes place isotropically

and 50% kinematically), and pure kinematic hardening. The type of

hardening is shown to have a pronounced effect on the response. Even

the initial load to +124 MPa displays a different yield stress for all

three cases. This is due to the fact that yielding occurs during cooldown

from the processing temperature thereby causing the yield surface to ex-

pand in the isotropic hardening mode or its origin to shift in the kine-
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Figure 3 1. Boron/Aluminum 900 Lamina Predicted Response Under a
+124 MPa Load Assuming Isotropic, Kinematic, and Com-
bined Hardening

matic hardening mode. Likewise, the negative loading demonstrates the

effect of hardening where the negative strain at -124 MPa is almost

equal to the positive strain that was calculated at + 124 MPa for the kine-

matic case. On the other hand, if there is isotropic hardening, then the

strain at minimum load (-124 MPa) is of a lower magnitude than that ex-

perienced at maximum positive load. Figure 32 provides further insight

in this direction where a 900 lamina under equivalent loading as in Fig-

ure 31 is subjected to a total of four cycles. For this case the matrix ma-

terial was assumed to possess a 95% kinematic hardening behavior.

Complete kinematic hardening would result in all cycles retracing the
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Figure 32. Boron/Aluminum 90* Lamina Predicted Cyclic Response (4
Cycles Displayed) for ±124 MPa Load Assuming 95% Ki-
nematic Hardening

original curve, but with 5% of the hardening considered to be isotropic

each subsequent cycle displays less of a difference between the maxi-

mum and minimum strains. Analytical results such as this when com-

pared to experimental data could be used to characterize the composite's

matrix hardening behavior.

As a final comparison for the elastic-plastic results, a weak

fiber/matrix bond micromechanics model is used to calculate the 90°

stress-strain response of SCS-6/Ti-6-4 at room temperature. Figure 33

exhibits this calculation along with a three-dimensional finite element

solution and experimental result (20). The constituent properties are
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Figure 33. 900 Response of SCS6/Ti-6-4 Assuming Weak Interfacial
Bond (20)

listed in reference 20 where a zero stress processing temperature of

9000C is used. Both numerical methods under-predict the experimental

fiber/matrix separation point. Hence, there are additional mechanisms

acting in the actual specimen that cannot be modeled with a weak bond

alone. Also, it is worthy of note that although the finite element solu-

tion experienced some yielding from the onset of fiber/matrix separation

and beyond, the micromechanics formulation did not experience matrix

yield until 430 MPa which is Just beyond the curve shown. This is ex-

pected since the stress is averaged over a greater area in the model, and

hence yielding is delayed until a larger portion of the matrix has reached

the yield stress.
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In this chapter, several comparisons have been made with other mi-

cromechanics models, finite element solutions and experiment, and for

the nonlinear cases the matrix material was modeled as elastic-plastic in

terms of a yield stress and strain hardening parameter. This provides the

capability to perform calculations on many composites since such prop-

erties are easily obtained from a simple uniaxial loading test as opposed

to using power law relations where the necessary constants may be diffi-

cult to obtain. Additionally, the model possesses the capability to con-

tinuously vary the type of hardening from an isotropic to a kinematic

type. Also, a weak fiber/matrix bond may be modeled by incorporating

an equivalent interfacial compliance which provides the flexibility to

model partial debonding as the compliance of the interface may be var-

ied. The results from this model demonstrate excellent accuracy such as

in determining elastic constants and the nonlinear behavior of 0° and 90*

lamina.

Other micromechanics models that were discussed in chapter 2 such

as the vanishing fiber diameter model incorporatel into the VISCOPLY

computer program and the multi-cell model used in the METCAN com-

puter program represent one-dimensional formulations of the microme-

chanics equations (1). The present model provides additional capabili-

ties when fiber/matrix interaction in the transverse direction (90* from

the fiber) is important by incorporating the full three-dimensional equi-

librium, continuity, and stress-strain relations for the representative vol-

ume element. Its simplicity allows the inclusion of various nonlinear ef-

fects such as the incorporation of time dependent plastic behavior in the

form of the unified theory of Bodner and Partom, or the incorporation of
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damage progression by modeling a failure of the fiber/matrix bond, and

all this is accomplished while maintaining the ability to employ the mi-

cromechanics formulation into a laminate analysis. The remaining chap-

ters will discuss these topics and present the results of' their inclusion

Into the micromechanics formulation.
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V. Viscoplastic Behavior

Development of reliable models for predicting the thermomechanical

time-dependent characteristics of high temperature composites has re-

ceived significant attention in the literature. This is mainly due to in-

creased interest in high temperature composite applications for improved

performance of air and spacecraft components where the loading may be

highly cyclic. Several of these studies involve numerical models which

incorporate the finite element or finite difference methods for solving

the equilibrium and continuity relations. For instance, Mueller and

Kolle used a general finite element approach to determine thermoelastic

properties (54), and Coker, Ashbaugh, and Nicholas analyzed ther-

moelastic-plastic behavior with a finite difference technique (55). Other

researchers have utilized the finite element method to analyze the ef-

fects of fiber/matrix debonding (56). Still others have employed the fi-

nite element method coupled with unified constitutive theory to model

time-dependent behavior (57).

The main drawback In using the finite element method is its compu-

tational intensity. Further, modeling nonlinear temperature, time, and

load dependent materials may require extensive iteration steps or com-

putational effort to achieve convergence thereby limiting the number and

type of solutions that may be obtained. Hence, more general models that

are less problem specific and require fewer calculations than the finite

element method are desired.
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This chapter presents the details and results of the present microme-

chanical analysis as applied to time-dependent inelastic problems (47,

48). To analyze time-dependent behavior the unified viscoplastic theory

of Bodner has been incorporated into the micromechanics model (58).

Several variations on the original Bodner viscoplastic material model

have been proposed so that the theory could incorporate temperature and

hardening effects more readily (59-61). The following sections will

briefly describe some of these models and will detail how they were in-

corporated into the micromechanics formulation.

5.1 Unified Viscoplastic Theory

Classical inelastic analysis separates the total strain into elastic,

thermal, plastic, and creep strains where each component is determined

from its own constituent elastic relation or flow rule. In contrast,

viscoplasticity combines the plastic and creep strains into a single

unified inelastic strain. Therefore, the total strain rate may be written

as

TOT - + JTH + ~i (97)

where •ij represents a tensorial strain rate and the superscripts TOT, E,

TH, and I denote the total, elastic, thermal, and inelastic components.

The inelastic strain rate term obeys a single flow rule designed to

account for both plasticity and creep. Various flow rules and state vari-

able evolution equations have been proposed for the unified theory, and
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three such material models have been chosen for this study. All three

are based on the original flow rule developed by Bodner and

Partom (58), and have been used previously by other researchers to ana-

lyze metal matrix composites (42, 57, 62).

5. 1.1 Bodner-ParZ 3m with Isotropic Hardening

The inelastic strain rate flow rule developed by Bodner and Partom

(58) may be represented by

,(n-'l) 17z2  ]i (82n 13-1 1j

where Do and n are inelastic material parameters, W'ij is the deviatoric

stress, J 2 is the second invariant of the deviatoric stress tensor, and Z is

a state variable sometimes referred to as the drag stress. It describes the

state of material hardening and is controlled by the evolution equation

2 mWp (Z I -Z) / Zo (99)

where m, ZO, and Zj are parameters which characterize the material in

the inelastic regime, and Wp is the rate of inelastic work given by

Wp - Gij (100)
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This unified theory model has the fewest parameters out of all three

models considered in this study, and it has also been incorporated into

Aboudi's micromechanics method of cells model (42). Its main draw-

back is that it considers only the isotropic portion of hardening, and

hence will have limited usefulness in characterizing behavior in cyclic

loading environments.

5.1.2 Bodner-Partom with Back Stress

The Bodner-Partom flow rule has been modified by Ramaswamy et

al. to include both isotropic and kinematic hardening behavior (60). The

flow rule is given by

L 172oo In] WiOlk
-Do e p -(V-] (101)

where QLij is referred to as the back stress and is a state variable that

controls the kinematic hardening behavior and K2 performs the same

function as J 2 in equation (98) and is expressed by Eq (81). The back

stress evolution equation is represented by

qj - f30'ij + ija2lf1 3 (102)

where -1 is the maximum value of the back stress and is allowed to

relax during creep loading. This saturation of the back stress is con-
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trolled by the relation

f~s M 3 )r('g I) (103)

Also, the drag stress evolution equation is given by

Z-mWp(Z1 -Z)- A1 (Z-4Z)P (104)

The quantities Do, n, f 1 , f3, B, (r, r, flcrp, m, ZI, A,, Z2, and p are materi-

al constants where all but Do are temperature dependent.

5.1.3 Bodner-Partom with Directional Hardening

The directional hardening material model developed by Stouffer and

Bodner (6 1) allows for kinematic hardening while avoiding the necessity

of including a back stress in the flow rule. The directional hardening

model used in this study is similar to that used by Chan and Lindholm

(59) but with the further modifications incorporated by Neu (63). The

flow rule is in the same form as the original Bodner model,

___._ , I+Z)21 Gd ! 1

i - Do ex1 (105)

where the state variable, Z, has been split into two components, ZI and

ZD, which represent the hardening due to isotropic and directional char-
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acteristics, respectively.

The isotropic hardening evolution equation is given by

ZIm•IWp(ZI'ZI)'AlZ(Z rZ + Lt. [( Z 2 )ý*j +(I ý)T] (106)

and the directional hardening evolution is controlled by

zD - p•j uij (107)

where the variables N and ij are determined by the equations

P m2Wp (Z3uij - ~IA2Z, l7 = -Up, r2+ _k 03 (108)

and

_____ (109)

The temperature rate terms in the above equations allow for improved

characteristics in the solution of nonmsothermal loading. The constants

DO, n, mi1, m2 , Z1, Z2, Z3, A1, A2, rl, and r2 are material parameters which

must be determined experimentally. Also, in all the Bodner-Partom

based models, Do is independent of temperature and assumed to be 104

for all the calculations in this study. All other constants are temperature

dependent parameters.
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5.2 Viscoplastic Algorithm

The micromechanics equations listed in chapter 3 are formulated in a

load-controlled format where the solution is obtained from the applied

composite stress as opposed to an applied strain. This is advantageous

from the standpoint that most cyclic or fatigue experiments are per-

formed using load-control, but it produces difficulties when solving in-

elastic nonlinear problems because the solution is more likely to di-

verge. Therefore, damping mechanisms must be built into the numerical

algorithm so that convergence may be achieved more easily. The algo-

rithm employed for the present study improves the convergence charac-

teristics by scaling the calculated change in the effective inelastic strain

rate during a single iteration by a certain computed factor. This ensures

that the effective inelastic strain rate will neither increase nor decrease

from one iteration to the next by more than a given predetermined

amount. The maximum change for a single iteration, 5 i., is deter-

mined for each region at the beginning of a load step. It is chosen based

on the elastic strain rate, - calculated by assuming the load increment

is completely elastic.

8fr '43 .•lexl0 lxl 18selc (110)
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Other parameters to scale the calculations may be used, but the above

value was found to provide good convergence characteristics for a wide

variety of calculations. The sequence of steps employed for computing

the inelastic strain of a single load-time increment applied to the micro-

mechanics model are given below (47):

(1) Determine the stresses in each region at time t- to + At by

employing the micromechanics relations and assuming the load

increment behaves as a completely elastic response (i.e. set

I IICiJ- o0if where o•i is the inelastic strain at t = to).

(2" Initialize the effective inelastic strain rate for each region, 0.1

and the iteration counter, p, to begin the iteration.

E&. 0 and p- I (Ill)

Iterate

(3) From the stresses that have just been calculated and the chosen

unified viscoplastic theory material model calculate the inelastic

strain rate, * , for each region.

(4) Determine the calculated effective inelastic strain rate for each

region by

* I1

(5) Determine the change in the effective inelastic strain rate, bf-ef,
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for each region between the calculated value from step 4 and the

value used in the previous iteration.

5if aFr- -ff (113)

(6) Calculate the scaling ratio, R, for each region by

for 5 ir< 0

R- 6c.ff-k5cx (114)

for 5 e qk 0

where k is a user supplied constant (usually between 2 and 30)

that controls the convergence stability. A larger value of k re-

sults in slower but more stable convergence.

(7) Set the effective inelastic strain rate of each region for the

present iteration, p, by adding the scaled parameter.

"p•ff - p-l&ff+ R 56x (115)

(8) Calculate the inelastic strain rate for each region by
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where for material models that do not contain a back stress it is

recognized that L-j = 0

(9) Determine the inelastic strain for each region that exists at the

end of the load-time Increment.

I 1 .1(117)

(10) Determine the region stresses at the end of the load-time incre-

ment by employing the micromechanics relations and the inelastic

strains calculated from step 9.

(11) Check for convergence by comparing the norm of the region

stresses calculated before and after the iteration or by some other

equivalent method. If convergence has not been achieved, then p

- p+ I and repeat steps 3 through 11.

The above algorithm was found to be quite versatile for handling var-

ious loading conditions and for easily incorporating the three types of

Bodner-Partom material models previously outlined. All solutions were

obtained on an Apple Macintosh 1Ix desktop computer.
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5.3 Viscoplastic Results

Representative results were obtained using each of the three material

models discussed above (47, 48). These results were compared with the

corresponding numerical solutions obtained by other methods such as

Aboudi's model and finite element solutions (42, 62). Also, solutions of

thermomechanical fatigue cyclic loading employing the material model

with directional hardening were analyzed and compared with available

experimental data (64, 65). The temperature dependent characteristics

of the material properties were incorporated, and the residual stresses

inherent in the composite after processing were accounted for by either

matching the processing temperature and cooldown procedures used by

other researchers in their calculations or estimating these conditions.

The fiber materials are assumed to be thermoelastic while the matrix ma-

terials are modeled with the unified viscoplastic theory.

5.3.1 Comparisons with Other Numerical Solutions

The original isotropic hardening Bodner-Partom material model has

been incorporated into the micromechanics method of cells developed by

Aboudi (42). Results from the Aboudi model and the present formula-

tion incorporating the Bodner-Partom Isotropic hardening material

model for Boron/Aluminum are presented in Figures 34 and 35. The

material constants for a unidirectional composite consisting of a 606 1-

TO aluminum matrix with a 50% volume reinforcement of boron fibers

were employed (42). The transverse normal response of the composite is

presented in Figure 34, and the in-plane shear response is depicted in
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Figure 35. Perfect bonding at the fiber/matrix contact was considered in

the calculations of the present model, and the corresponding solutions

plotted for Aboudi's model also assumed perfect bonding. The two

micromechanics solutions are within 10% of each other for these calcu-

lations with the present model predicting a slightly stronger material re-

sponse. This is consistent with the assumptions of the two models as the

present model assumes the normal and shear stresses decouple, and

therefore, any normal applied stress on the composite will not produce

any shear stresses which might contribute to the deviatoric stress tensor.

Such a model will likely produce a stiffer response in the inelastic re-

gime than models which account for such coupling effects because the

deviatoric stress tensor controls much of the behavior in this realm.
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Figure 34. Unidirectional Boron/Aluminum Under Transverse Normal
Loading as Calculated by the Present Model and the Meth-
od of Cells (42)
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Figure 35. Unidirectional Boron/Aluminum In-Plane Shear Response as
Calculated by the Present Model and the Method of
Cells (42)

Also, the method of cells model assumes that continuity is satisfied on

an average basis between subcells. Hence, overlap and gaps may occur

between adjacent subcells while the average continuity condition

remains satisfIled. This would likely result in a weaker response than a

model that maintains continuity all along the interface between adjacent

regions.

A further comparison with Aboudi's method of cells is presented in

Figure 36 where a graphite/aluminum unidirectional composite is con-

sidered. The material constants for 2024-T4 aluminum alloy and T-50

graphite fibers as employed by Aboudi were incorporated in the
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calculations involving the present model with a 30% fiber volume rein-

forcement (42). The stress free state or processing temperature of the

composite is taken to be 3710C. This initial state is cooled to 210C and

subsequently reheated to 37 1OC while maintaining a zero applied

composite stress. This is equivalent to the calculation presented in Fig-

ure 29, but here, the unified viscoplastic theory of Bodner (as was used

in Aboudi's calculations) is employed as opposed to the classical elas-

tic-plastic formulation. When the temperature reaches 150"C during the

cooldown phase, the calculations indicate that the microstresses are suf-

ficient to produce yielding in the matrix. Both methods are in agree-

ment on this as well as the on the remainder of the strain-temperature

profile.
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Figure 36. Longitudinal Strain History of Graphite/Aluminum Under
Thermal Load (Cooldown and Reheat) (42)
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Three dimensional finite element solutions incorporating the unified

theory with back stress have been performed by Sherwood and

Quimby (66). The finite element program ADINA was modified to

utilize the unified theory with back stress material model, and a unit

fiber/matrix cell or RVE was analyzed to predict composite behavior.

Comparisons between the micromechanics model of the present study

and finite element solutions from Sherwood and Quimby are presented in

Figures 37 and 38. The composite system analyzed consisted of a

titanium based alloy, Ti- 02IS, matrix material embedded with a 35%

volume fraction of silicon carbide, SCS6, fibers. Constituent micros-

tresses were assumed to be zero at a processing or cure temperature of

815°C, and calculations involving both a perfect fiber/matrix bond and

1600

Piber/Matrix Perfectly Bonded

1200 -

-Micromechanica
a22 (MPa) %-FiniteElement

800

Fiber/Matrix Unbonded

400

Unified theory with back stres

0 1 1
0 0.004 0.008 0.012 0.016 0.02

e22 (nin

Figure 37. Predicted Transverse Normal Response of SCS6/Ti-f2 IS at

23°C Employing Bodner-Partom with Back Stress (66)
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Figure 38. Predicted Transverse Normal Response of SCS6/Ti-021S at
600"C Employing Bodner-Partom with Back Stress (66)

an unbonded fiber/matrix contact were performed. The nonlinear mate-

rial model employed in the micromechanics solution was the unified the-

ory with back stress material model earlier discussed which correspond-

ed to that used in the finite element solutions.

The transverse normal stress-strain response at 23"C is depicted in

Figure 37. As it Is expected, the unbonded fiber/matrix interface dem-

onstrates a considerably weaker response than a perfectly bonded inter-

face for this type of loading. Residual thermal stresses due to cool

down from the processing temperature prevent fiber/matrix separation

from occurring until the applied stress reaches approximately 150 MPa.

Once these residual stresses are overcome, the composite stiffness is
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greatly reduced due to debonding. Yielding of the matrix begins to

occur shortly thereafter at an applied composite stress of approximately

400 MPa. The perfectly bonded solution indicates that substantial ma-

trix yielding does not occur until the applied stress reaches approximate-

ly 1300 MPa. Similar characteristics are observed in calculations where

the mechanical load is applied at 600"C as in Figure 38. The lower

yield stress of the matrix due to the elevated temperature produces a re-

sponse that is considerably weaker than that at room temperature. Ele-

vated temperatures also decrease the residual stresses which result in

fiber/matrix separation occurring in the unbonded calculations at ap-

proximately 40 MPa. All these characteristics are captured equally well

by both the micromechanics analysis and the finite element results

displaying a very good agreement between the two. No greater than a

10% difference in stress is observed between the two methods at any

point.

Further comparisons of the present formulation were done with finite

element solutions incorporating the unified theory material model with

the directional hardening. Kroupa and Neu have incorporated the direc-

tional hardening material model into ADINA and performed thermome-

chanical fatigue analysis by employing a unit cell or RVE approach (62).

The constituent properties used in the calculations are listed in reference

63, but since extensive experimental comparisons will be made with this

composite, the properties are also listed here for completeness. The

constituent properties for the Ti- 02 IS matrix material are listed in Table

6, and the SCS6 fiber properties are presented in Table 7. A comparison

between the present micromechanics model and finite element calcula-
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tions of the Kroupa and Neu study using the properties of Tables 6 and 7

Is presented in Figure 39. This plot parallels the calculations involving

the back stress material model in Figures 37 and 38. A unidirectional

SCS6/Ti-021S composite consisting of a 35% fiber volume fraction with

both an unbonded and a perfectly bonded fiber/matrix interface is

considered and loaded perpendicular to the axis of the fiber. The pro-

cessing temperature at which the microstresses were assumed to be zero

was chosen to be 900"C, and during the cool down phase a heat treat-

ment cycle was simulated where the composite was held at 621 °C for

Table 6. Material Constants Used for the Ti- 02IS Matrix Material (Vis-
coplastic Model: Bodner-Partom with Directional Hardening)
(63)

Temp E a (xl0"6) n Z2 Z3 m2 Al-A2
°C GPa I/-C MPa MPa I/MPa I/sec

23. 112.0 6.31 4.80 1550. 100. 0.35 0.00
260. 108.0 7.26 3.50 1300. 300. 0.35 0.00
315. 106.1 7.48 3.05 1251. 390. 1.50 0.00
365. 104.1 7.68 2.65 1205. 500. 2.55 0.00
415. 101.7 7.88 2.24 1160. 660. 3.60 .001
465. 99.1 8.09 1.84 1115. 960. 4.64 .005
482. 98.1 8.15 1.70 1100. 1100. 5.00 .008
500. 97.0 8.23 1.50 1089. 1300. 5.76 .012
525. 95.5 8.33 1.28 1074. 1670. 6.82 .020
550. 93.9 8.43 1.10 1060. 2100. 7.88 .034
575. 92.2 8.53 0.97 1045. 2600. 8.94 .056
600. 90.4 8.63 0.82 1030. 3700. 10.0 .089
650. 86.6 8.83 0.74 1000. 3800. 10.0 0.21
760. 77.2 9.27 0.58 600. 4000. 15.0 1.00
815. 72.0 9.49 0.55 300. 4100. 30.0 2.00

v-0.36 D0_104 sec" 1  m1-0.0 MPa" 1

ri-3.0 r2-'3.0 Z 1- 1300 MPa

Tret-23°C
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Table 7. Thermoelastic Properties of the Silicon Carbide (SCS-6)
Fiber (v-0.25, Tref23°C)

Temp (°C) E (GPa) a (xl0"6 °C-1 )

21. 393. 3.53
93. 390. 3.57

204. 386. 3.58
316. 382. 3.61
427. 378. 3.67
538. 374. 3.74
649. 370. 3.81
760. 365. 3.89
871. 361. 3.97

1093. 354. 4.10

eight hours before cool down to 25°C. Similar characteristics as previ-

ously observed in Figures 37 and 38 are present in the directional hard-

ening material model calculations of Figure 39. Again, a very good

agreement is observed here also between the present simplified micro-

mechanics analysis and the computationally intensive finite element cal-

culations.

Thermomechanical fatigue calculations were performed on the same

composite material system. After the same cooldown procedures (as

outlined in the previous paragraph) were simulated, the temperature and

longitudinal stress parallel to the fiber axis were simultaneously in-

creased to 150 0 C and 100 MPa, respectively. At this point the tempera-

ture and stress were cycled in-phase with a triangular waveform between

temperatures of 150-650°C and longitudinal applied composite stresses

of 100-1000 MPa. The time history of the average longitudinal matrix

stress and strain during the first seven cycles as calculated by the

present micromechanics model and the finite element solution of Kroupa
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Figure 39. Predicted Transverse Normal Response of SCS6ITi-0•21S at
25°C Employing Bodner-Partom with Directional Harden-
ing (62)

and Neu is displayed in Figure 40 where the zero strain reference point

was taken to be 25°C (62). The two solutions are in excellent agreement

and indicate that significant plastic deformation occurs during the first

rycle while subsequent cycles demonstrate some plasticity as there is a

gradual drift of increasing strain and a relaxation of the stress.

Simulations of an out-of-phase thermomechanical fatigue load is

presented in Figure 41. The preload sequence for the out-of-phase case

was similar to that for the in-phase loading except once the temperature

and stress reached 150°C and 100 MPa, the stress was held constant

while the temperature was increased to 650 0 C. The temperature and

stress were then cycled out-of-phase between 150-650°C and 100-
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Figure 40. Time History of SCS6/Ti-021S Average Matrix Stress and
Total Strain Under Longitudinal In-Phase Thermomechani-
cal Fatigue Loading (62)

1000 MPa. Once again both analysis methods are in excellent agree-

ment. However, unlike the in-phase simulation, little or no plastic de-

formation was observed during the cycling.

5.3.2 Comparisons with Experiment

Validating the micromechanics model with other numerical solutions

provided the means to determine if the calculations of the present

micromechanmcs analysis and viscoplastic algorithm were performed cor-

rectly. This was accomplished in the previous section. Further valida-

tion with experimental data provides understanding into how well a

micromechanics solution can actually predict a composite's behavior.
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Figure 41. Time History of SCS6/Ti-021S Average Matrix Stress and
Total Strain Under Longitudinal Out-of-Phase Thermume-
chanical Fatigue Loading (62)

The SCS6/Ti- P2 1S composite system has been experimentally

characterized (65). Therefore, the micromechanics model of the present

study and the unified theory material model with directional hardening

were employed together to compare with the experimental data obtained

from other researchers (65, 67).

Figures 42 through 44 display 0" lamina tensile response at three

temperatures. The micromechanics model assumed the microstresses

were zero at 900.C, and then the model was cooled to room temperature

at 25 0 C followed by reheating to the desired temperature. The fiber vol-

ume fraction of the tensile specimens were measured at 34.3% and

matched in the micromechanics solutions. The tensile response is domi-
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nated throughout by the fiber, but matrix nonlinearity is detectable in

the composite response at high strains.

Not all physical mechanisms acting in the composite are accounted

for in a micromechanics approach, such as fiber and matrix cracking.

Also, the correct bond strength between fiber and matrix is usually un-

known. Therefore, under conditions when such mechanisms are present

any comparison between the micromechanics and experiment must be

viewed with them in mind. In addition, there is experimental scatter

which must also be considered. In spite of these differences, the present

analysis is in good agreement with its counterpart from experiment as

shown in Figures 42 through 44. Further insight into these differences

is given in Figure 45 where the 900 response or the stress-strain re-

2500

2000

1500

Stress
(MPa) 1icwmechanics

I000 •' ... Bxeriment/- n
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Figure 42. 00 SCS6/Ti-021S Tensile Response at Room Temperature
(25°C) (67)
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Figure 43. 00 SCS6/Ti-P21S Tensile Response at 5000C (67)

1400

1200 -

1000

goo

Stress

(0Micromechanics

400 Experiment

200 7

0
0 0.002 0.004 0.006 0.008 0.01 0.012

Strain (m/m)

Figure 44. 00 SCS6/Ti-021S Tensile Response at 650°C (67)
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Figure 45. 90* SCS6/Ti-021S at Room Temperature (25*C) (67)

sponse perpendicular to the fiber axis is depicted for the composite. The

micromechanics solution assumed an unbonded fiber/matrix interface,

and fiber/matrix separation occurs at about 150 MPa at which point the

first knee in the stress-strain response is observed. This is where the

applied load has overcome the residual stresses due to processing. The

experimentally observed point of initial nonlinearity does not occur until

approximately 280 MPa which indicates that the fiber/matrix bonds

throughout the composite possess a finite strength, and therefore, the

initial point of nonlinearity is delayed until these bonds begin to fail due

to the applied load. It should also be noted that finite element calcula-

tions of an unbonded fiber/matrix interface produce a fiber/matrix sepa-
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ration point similar to that found from the micromechanics results (see

Figures 37 through 39). Therefore, the difference between the fiber/ma-

trix separation point as calculated by the micromechanics model and as

observed in experiment is most likely due to a finite bond strength in the

actual composite material rather than improper calculations of an un-

bonded interfacial contact in the micromechanics model. These features

of interfacial debonding will be discussed at length in chapter 6.

In addition to the SCS6ITi-021S composite system, calculations

performed in this study were compared with published experimental data

of SCS6/Ti-15-3 composite (64, 68, 69, 70). T,.. matrix material, Ti-

15V-3Cr-3AI-3Sn alloy, undergoes a phase transformation at elevated

temperature from the as received P-phase to the more stable a-phase

which is accompanied by improved strength characteristics (7 1). How-

ever, due to the lack of experimental data characterizing the matrix ma-

terial at all temperature ranges, the present study used thermoelastic and

viscoplastic properties determined from studies involving both the as-re-

ceived and heat treated material (29, 56, 69). Therefore, only a single

set of constants were used in the analysis whether the comparison in-

volved a heat treated specimen or not. The material properties devel-

oped from the experimental data for the matrix are presented in Table 8,

and the properties for the silicon carbide fiber which is assumed to be

thermoelastic nrc the same as were listed in Table 7. A plot of the ma-

trix material response using the unified theory with directional harden-

ing viscoplastic material model and the constants of Table 8 is presented

in Figure 46 for a strain rate of 0.001/sec. The material characteristics

exhibited in Figure 46 compare well with the previously published re-
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suits (29, 56, 69). However, further improvement could be attained if

two sets of constants were available depending on whether the applica-

tion involved the heat treated material or not. This is not possible at the

present time due to the lack of experimental data at all temperature

regimes.

The stress-strain response for a 0" layup of this composite at both

room and elevated temperature is depicted in Figures 47 and 48, respec-

tively, where the composite was unloaded at approximately 75% of its

ultimate strength at each temperature (69). Excellent agreement with

the experiment is noted at these conditions. The nonlinear characteris-

tics as observed in experiments are captured very well by the microme-

chanics approach, and an excellent agreement between predicted and ex-

perimental values of the permanent plastic strain upon unloading is ob-

Table 8. Material Constants Used for the Ti- 15-3 Matrix Material (Vis-
coplastic Model: Bodner-Partom with Directional Hardening)

Temp E a (x10"6) n Z2 Z3 m2 AI=A2
0C GPa I/°C MPa MPa I/MPa I/sec

25. 86.3 8.48 3.00 1200. 200. 3.0 0.00
315. 80.4 9.16 2.30 1070. 454. 4.9 0.06
482. 72.2 9.71 1.90 1000. 600. 6.0 0.10
538. 67.8 9.89 1.10 850. 1500. 8.0 0.30
566. 64.4 9.98 1.00 800. 2300. 10.0 0.50
649. 53.0 10.26 0.80 600. 3000. 20.0 2.00
900. 25.0 10.50 0.55 150. 5000. 50.0 3.00

v-0.36 D0 I104 sec"1  mi=0.0 MPa"I

rl-3.0 r2-3.0 ZI-1300 MPa

Tref=2 3 °C
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Figure 46. Ti-15-3 Alloy Matrix Material Response Using the Con-
stants of Table 8 and a Strain Rate of 0.001/sec

tained. A further comparison of the effects of tension loading on a 00

layup is presented in Figures 49 and 50 where the longitudinal and trans-

verse strains are plotted. The point In these curves where the slopes

begin to increase is indicative of an increase in the Poisson's ratio

which implies that plasticity has become prevalent (68). For the room

temperature case, this occurs at a longitudinal strain of approximately

0.0055 m/m, and for the elevated temperature case, at a longitudinal

strain of approximately 0.0035 m/rn. Therefore, good predictions of

both the onset of plasticity and the subsequent behavior were obtained

by the micromechanics solution.
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Figure 48 00 SCS6/Ti-15-3 Composite Layup at 5380C (69)
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The stress-strain response under a 900 or transverse load condition at

room and elevated temperature is displayed in Figures 51 and 52,

respectively. As it was discussed previously for the SCS6/Ti-021S

system where the behavior under this type of load is dominated by the

matrix and the fiber/matrix interface, the same applies for SCS6/Ti-15-

3. Both compressive and tensile behavior are depicted in these figures,

and there is a marked difference between their responses. This is due to

the weak fiber/matrix bond strength of this composite. In tension, the

fiber and matrix separate once the compressive residual thermal stress

and interfacial bond strength are overcome. Therefore, the tensile re-

sponse will demonstrate nonlinearity at a much lower level of applied

stress. To account for this in the micromechanics, an unbonded inter-

face was assumed where once the residual compressive stress at the in-

terface was overcome, separation would occur. This method does not

account for any interfacial bond strength, and as such, only the effects

of residual stress were considered. The composite was assumed to be

stress free at a processing temperature of 9000C for all the calculations

involving the Ti-15-3 matrix material. Therefore, the room temperature

tensile response exhibits nonlinearity at a higher stress level than the el-

evated temperature case due to the larger compressive interfacial stress.

Also, the micromechanics exhibit nonlinearity at a lower stress level

than the experiment. This is expected since the effect of a finite interfa-

cial bond strength is not accounted for in the micromechanics solution,

but this contingency will be discussed in the following chapter.

A compressive load is not effected by the weak interface, and there-

fore, the nonlinearity is a result of matrix plasticity. As shown in Fig-
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Figure 51. 90SCS6/Ti-15-3 Composite Layup at Room Temp-
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Figure 52. 90°SCS6/Ti-15-3 Composite Layup at 5380C (70)
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ures 51 and 52, the micromechanics solution underpredicts the stress

level at which plasticity becomes prevalent in compression. However,

the matrix material constants employed in the unified theory (Table 8)

were determined from the available tensile test data of the matrix. Also,

most materials possess a yield stress in compression that is greater than

their yield stress in tension, so it is not surprising that the micromechan-

ics results display a lower compressive yield stress than the experiment.

This clearly indicates that there is a need to characterize experimentally

the matrix material in compression for accurate prediction of an MMC's

response under compressive loading.

Figure 53 presents the longitudinal and transverse strains for a 90"

laminate loaded in tension at room temperature. The decrease in slope

indicates a decrease in the Poisson's ratio which verifies that the nonlin-

earity in the tensile response of Figure 51 is due to fiber/matrix separa-

tion as opposed to matrix plasticity which was observed in the 00 lami-

nate (Figure 49). If the composite's response were dominated by matrix

plasticity, then an increase in the Poisson's ratio would be observed.

Also, the micromechanics solution was able to predict this behavior, and

since the only two mechanisms for nonlinearity in the micromechanics

solution were matrix plasticity and fiber/matrix debonding, then it is

most likely that the behavior observed in experiment was due to

fiber/matrix debonding.

Most high temperature applications involve thermomechanical fa-

tigue or nonisothermal loading, and therefore, it is desirable for

analytical methods to be able to encompass such loadings. Hence, the

present micromechanics formulation was employed to predict the ther-
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Figure 53. Longitudinal vs. Transverse Strain for SCS6/Ti- 15-3 Loaded
90" to the Fiber at Room Temperature (68)

momechanical fatigue response of the titanium based MMCs discussed in

this chapter.

For Instance, comparisons with the experimental results of Castelli

et al. (64) for unidirectional SCS6/Ti- 15-3 are presented in Figure 54.

Loading consisted of increasing the temperature and mechanical applied

load simultaneously from 930C to 538"C and from 44.8 MPa to 896 MPa

in-phase followed by decreasing them in the same way using a sinusoi-

dal waveform with a period of 180 seconds. A plot of the maximum and

minimum total strains for the first 100 cycles is presented, and the mi-

cromechanics solution captures the overall behavior very well, but

slightly overpredicts the maximum strain for the first few cycles by ap-
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Figure 54. 0° SCS6ITi-15-3 Max/Min Strain History for In-Phase Ther-
momechanical Fatigue (64)

proximately 10%. This can most likely be attributed to a change in the

mechanical properties due to a phase transformation after a specimen

has undergone heat treatment (7 1). For instance, in the temperature

range considered, the mechanical properties of the matrix used in the

micromechanics solution were determined for the most part from tests

involving no heat treatment. However, the specimen depicted in the ex-

perimental results underwent a heat treatment of 6500C for one hour

(64), and therefore experienced a change in the matrix mechanical prop-

erties.

A unidirectional 00 SCS6/Ti-021S composite layup is considered

next. Extensive experimental results were available for this composite
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(67), and the material constants for the Bodner-Partom with directional

hardening model have been well validated (63). Both in-phase and out-

of-phase thermomechanical fatigue loads were applied, but only the me-

chanical strains (i.e. excluding the thermal part) are depicted so that a

better understanding of the mechanical response may be obtained. The

calculations matched the experimental specimens' measured fiber vol-

ume fraction, and just as in the previous calculations, the temperature

dependent properties of both the fiber and matrix are considered. Resid-

ual stresses were accounted for by assuming a 9000C cure temperature.

The temperature was cycled between 1500C and 6500C for all calcula-

tions and maximum applied loads of 800 MPa and I 100 MPa were exam-

ined. Each temperature-load-time cycle consisted of a triangular applied

thermomechanical waveform over a 180 second time interval.

The in-phase thermomechanical fatigue behavior during the first and

tenth cycles for a maximum applied load of 1100 MPa is displayed in

Figure 55. The calculations capture the permanent or creep strain ex-

tremely well and provide an accurate representation of the overall be-

havior. A slightly higher prediction of the modulus over that observed

in the experiment (approximately 10%) is obtained. This is not surpris-

ing since at the peak stress of 1100 MPa the composite Is close to its

failure strength for that temperature of approximately 1250 MPa. There-

fore, a significant amount of damage in the form of fiber breakage would

be expected over the first few cycles which is not accounted for in the

present micromechanics analysis (65).

The out-of-phase behavior at the 1100 MPa maximum load is depict-

ed in Figure 56. The accumulated permanent strain after ten cycles is
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Figure 55. 00 SCS6/Ti-ft21S Response to an In-Phase Load to 1100
MPa (67)

much less than was found with the in-phase loading, and the modulus

determined from the calculations is in excellent agreement with experi-

ment. This is as expected since the out-of-phase loading produces less

damage than was experienced with the in-phase load (65).

Similar calculations involving a maximum applied stress of 800 MPa

provide further insight. The behavior due to in-phase loading is present-

ed in Figures 57 and 58. For the first ten cycles the micromechanics

results match very well with the experimental results both in accumulat-

ed strain and modulus. As the fatigue loading continues, damage in the

form of fiber and matrix cracking progresses in the specimen resulting

in a larger accumulated strain than is calculated by the model (Figure
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58). The micromechanics model accounts only for the viscoplastic be-

havior of the matrix material, but no damage. Therefore, the difference

between the calculations and experiment provides a measure of the

damage induced during cycling. On the other hand, the out-of-phase

results (Figure 59) demonstrate only a very modest strain accumulation

after 24 cycles.

An advantage of a reliable micromechanics solution is its ability to

calculate and track the constituent microstresses throughout loading.

Such results are useful for providing insight into the response of com-

posites, such as determining when the constituents are approaching their

respective failure strengths, etc. Examples are presented in Figures 60
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and 61 where the average fiber and matrix stresses in the fiber direction

are plotted for both in and out-of-phase thermomechanical loads. These

plots represent the constituent results of the calculations previously pre-

sented in Figures 57 and 59, and it is noted that the in-phase loading

produces a peak fiber stress that is approximately twice as large as with

the out-of-phase load. In addition, the matrix stresses relax

significantly for the in-phase loading within the first ten cycles, and the

fiber stresses increase accordingly as the load is redistributed. Thus,

fiber cracking should occur much sooner with the in-phase rather than

the out-of-phase loading. This would result in a greater strain accumu-

lation in the experiment than would be calculated by a micromechanics
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model. These characteristics have been observed in the previous figures

when comparisons with experiments are made (65, 67).

The present model's capability to calculate reliable three-dimension-

al constituent microstresses allows for the incorporation of various

three-dimensional unified viscoplastic theory models. The present chap-

ter discussed the application of such viscoplastic models to the unidirec-

tional composite micromechanics equations of chapter 3. A single algo-

rithm was developed where all the examined material models could be

easily adapted. This algorithm was found to be very stable and reliable

for the calculations considered and provided a good basis from which

the various unified theory material models could be added.

Results from the present micromechanics model closely matched

with a previous micromechanical analysis (Aboudi's model) which in-

corporates the basic Bodner-Partom viscoplastic theory material model

with isotropic hardening. Isotropic hardening material models are useful

when composites are subjected to monotonic loading. However, in order

to accurately model high temperature metal matrix composites under

complex loading environments, more advanced material models which

include kinematic hardening should be incorporated into the microme-

chanics analysis. The present formulation allowed for the inclusion of

such material models with ease, and these results were compared with

the corresponding available finite element and experimental results

which showed that the present micromechanics analysis provides accu-

rate calculations of a unidirectional composite's nonlinear response

under various loading conditions including both monotonic loading and

thermomechanical fatigue cycling. Also, an examination of the calculat-
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ed constituent microstresses throughout the load-time history furnished a

clearer understanding of the origins of damage progression under such

loading conditions. Hence, reliable calculations of a composite

material's constituent microstresses through the use of micromechanics

techniques can equip the researcher with an additional tool to better un-

derstand the material's behavior.

Also, comparisons with experimental data provided further insight

into the transverse response of a titanium alloy matrix composite. The

results suggest that in addition to the effects of residual stresses, a finite

bond strength exists at the fiber/matrix interface in the actual composite.

A thorough discussion of the effects of a finite fiber/matrix bond

strength and Its associated failure on the composite behavior is given in

the following chapter.
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VI. Fiber/Matrix Interfacial Failure

The titanium-based MMCs discussed in the previous chapter have

been found to possess low fiber/matrix bond strengths (68). This results

in a pronounced effect on the transverse behavior as evidenced by Fig-

ures 45, 51 and 52. Previous researchers have attempted to mathemati-

cally model low fiber/matrix bond strengths by replacing the interface

with a perfectly weak or unbonded fiber/matrix contact (56, 66). How-

ever, modeling the interface in such a way does not allow for a finite in-

terfacial strength, and therefore the important point at which fiber/ma-

trix separation occurs under transverse normal loading will be less in the

analytical solution than in the actual observed behavior as shown in the

previous chapter. Hence, MMCs exhibit behavior that cannot be mod-

eled with either a perfectly weak or strong bond alone. Attempts have

been made to correct this difficulty by modeling the interface as a thin

third phase region possessing elastic-plastic properties with a relatively

low yield stress (28). This type of an approach is sufficient for mono-

tonic loads, but it meets with difficulty upon unloading and subsequent

cycles since it is unable to account for the damaged interfaces which

usually occurs in MMCs during the initial static load or under repeated

loads.

The problem at hand is of a statistical nature and in order to accu-

rately solve it, a statistical representation must be sought. Gayda and

Gabb employed a one-dimensional model consisting of 128 elements of

random fiber content to achieve a numerical approximation of progres-
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sive interfacial failure under transverse normal load (72). Each succes-

sive load in the study contained elements of failed fiber/matrix bonds

that may have been intact during the previous load. However, the com-

putational intensity of such a method precludes its use for anything

other than in a simplified one-dimensional method.

A unit cell or RVE approach to micromechanics as is put forth in the

present study assumes that the entire composite will behave according to

a single fiber/matrix cell possessing the average fiber volume fraction of

the composite. Therefore, any associated material properties given to

the RVE must be the composite average material properties and not just

those associated with a single fiber and surrounding matrix. Moreover,

to accurately model the effects of interfacial failure, an appropriate

mathematical representation of the interface must be sought that reflects

the average behavior of all interfaces throughout the composite.

The following discussion seeks to blend a statistical representation

of fiber/matrix interfacial failure with the unit cell micromechanics

equations already presented. First, a linear-elastic closed form statisti-

cal approach to analyze the effects of interfacial failure on the compos-

ite is Introduced. Then, the average behavior of the interfacial failure

from this approach is extracted and used in the nonlinear micromechan-

ics technique discussed in the previous chapters.

6.1 A Statistical Model of Interfacial Failure

The statistical model is based on assuming a Gaussian distribution

for the interfacial stresses, and hence, the fraction of interfaces which

have failed at any given moment may be determined from the probability
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density function and the interfacial failure strength. Figure 62 depicts a

cross-section of the composite during a transverse applied load. Due to

the random fiber packing and random interfacial failure strengths, all in-

terfaces do not fail at the same moment. Initially, the majority of the

interfaces are intact, but as the applied load is increased more interfaces

fail as their respective failure strengths are exceeded.

As mentioned in the above paragraph, a Gaussian distribution for the

interfacial stresses is assumed. Other researchers have performed simi-

lar analyses assuming a three parameter Weibull distribution (73). The

advantage of the Gaussian distribution is that only two parameters are

required thereby reducing the number of material constants which must

be obtained from experimental data. Also, it is assumed that the effects

of the random nature of the interfacial failure strengths may be included

in the interfacial stress distribution, so only a single interfacial failure
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Figure 62. Schematic of Interfacial Failures During Transverse Load
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strength need be specified. An example is presented in Figure 63 where

the distribution of interfacial stresses, 01, is presented. All interfaces

with stresses above the interfacial failure strength, of, represent the

fraction of interfaces that have failed. It is further assumed in the

statistical model that interfacial failures do not effect the Gaussian

distribution for the remaining intact interfaces. Therefore, the value,

ame, in Figure 63 represents the mean of the Gaussian curve, and not the

average interfacial stress which is given by the ensemble average of the

unshaded area. Also, it is assumed that the standard deviation of the

interfacial stresses remains constant as am either increases or

decreases. The final assumption in the development of the statistical

model is that the fiber and matrix are linear-elastic. This last assump-

p (ad)

Pailed Interfaces

on

Figure 63. Distribution of Interfacial Stresses
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tion will be abandoned when the mathematical model of the interface is

adapted to the nonlinear micromechanics equations, but it is used in the

initial formulation so that a concise set of equations may be developed

to describe the average behavior of the Interface.

6. 1.1 Relations for Interfacial Failure

In this section, the above assumptions are used to develop a set of

relations which describe interfacial failure under a static normal applied

load. The Gaussian distribution of the interfacial stresses is given by

P(Oý( I v0 2 ]I for - c<Iy <cc (118)
2S 2

where S is the standard deviation of the curve in Figure 63.

The portion of the curve that lies above of represents all interfaces

that have failed under the current load. The stress on the failed interfac-

es are considered to be zero since they are no longer capable of with-

standing a tensile load. Therefore, the ensemble average of the interfa-

cial stress for all interfaces may be represented by employing the unit

step function, u, as given below

OIAvG "f+ - u((1 -(Fa] UoIP(-'ýdao a P(aI dad (119)
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which may be solved to give the general form of the average interfacial

stress as

a - A.- ex 1 xt am), l+~( !M_ ~ I + (120)
'rlAVO =j 2S2  j2 rf ~r 1

where

erf[t] - - exp(-x2) dx (121)

To determine the relative interfacial displacements, further assump-

tions on their behavior must be made. For instance, it is assumed that

the displacement of all failed interfaces are proportional to the stress at

the interface if it had not failed. In other words, the displacement of a

failed interface is linearly related to how far above a f that particular

failed interface is in Figure 63. This assumption for the displacements

of all the failed interfaces is analogous to Hooke's law for elastic

materials. In addition, the displacement of all intact interfaces are as-

sumed to be zero. Therefore, the displacement of any interface may be

given by

uifor 9< (122)
ui for a1Ž3of
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where Cu is a constant rela~ed to the elastic properties of the material

and is therefore temperature dependent.

The general form for the average displacement of all interfaces may

now be determined. Taking the ensemble average and substituting Eq

(122) results in

UI AVG J UI P(OI) do, - f CU Oa P(oad&1  (123)

which may be rewritten as

UIAVO= CU 0IP(O doI - a1 OI do, (124)

The first integral inside the brackets of Eq (124) represents the mean

of the curve in Figure 63, am, and the second integral is the same as was

already solved in Eqs (119) and (120). Therefore, the general form for

the average displacement of all interfaces is given by

S[ (0Om)2 _____o'°

230 1 - (125)
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From the assumption that the material is dominated by linear-elastic

behavior it is inferred that the mean stress, Om, of the Gaussian curve is

linearly related to the composite applied stress, a, and the change in

temperature from the zero stress state, AT. Therefore,

OmM CIO+ CTAT (126)

where CI and CT are temperature dependent constants.

The above formulation presents five constants (Cu, CI, CT, of, and

S) that are necessary to describe the interfacial damage progression

under a statically applied load. The first three, Cu, CI, and CT are

simply mathematical constants from the linear-elastic assumption and

may be determined from a micromechanical analysis. Therefore, only

two parameters, of and S, are composite interfacial properties which

must be determined experimentally.

In order to evaluate these last two constants, comparisons must be

made with appropriate experimental data. The method chosen in the

present study was to compare experimental stress-strain curves of

monotonically increasing load with similar results obtained from the

above analysis. To do this, a relation is needed which relates the com-

posite stress to the composite strain. Therefore, such a relation is devel-

oped from the linear-elastic material assumption by first assuming the

composite possesses only intact or strong interfacial bonds. The com-

posite strain, F, for such a material may be linearly related to the interfa-
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cial stress and the change in temperature by

F - C aOIAV + CTAT (127)

Likewise, the composite strain for a material that possesses only failed

or unbonded interfaces may be related to the interfacial displacement

and change in temperature by

F - C2UIAV( + CTAT (128)

where C2, CT, and C2 are elastic constants of the particular composite

and may be determined through a micromechanical analysis. Therefore,

if the mechanical portions of strain for the two types of material are

summed, then a general relation may be obtained for a composite pos-

sessing both intact and failed interfaces which is given by

e C2uIAvG + C2 IjAv + CdAT (129)

This equation along with Eqs (120) and (125-126) are used in the

following section to demonstrate the characteristics of the statistically

based model and compare with linear-elastic experimental results. Also,

it should be noted that a similar development may be followed for longi-

tudinal shear along the interface. Almost identical equations will result

for longitudinal shear in a unidirectional composite with the only excep-
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tion being the absence of the terms involving temperature.

6.1.2 Characteristics of the Statistical Interface Model

A micromechanical analysis using the formulation of chapter 3 under

transverse normal load was performed on the SCS6/Ti-15-3 material

with a 35% fiber volume fraction to determine the elastic constants Cu,

CI, CT, C2, C1, and C2, the results of which are listed in Table 9. These

constants were then used in conjunction with an interfacial failure

strength, of, :)f 250 MPa, and a standard deviation of interfacial stresses,

S, of 60 MPa which produced the best match to the experimental com-

posite behavior under a monotonically increasing load. The change in

temperature from the stress free state was chosen at -875*C whici simu-

lates a cooldown from 900°C to 250C. The results of the model as com-

pared to the experimental data of Majumdar (68) for room temperature

SCS6/Ti-15-3 is presented in Figure 64. The composite is apparently

Table 9. Interfacial Elastic Constants for SCS6/Ti-15-3 as Deter-
mined from a Micromechanical Analysis

- 1.95410-5 fiber dia. = 5.369xMPa MPa
1

CT = 0.1965 MPa C = 0.5976

1C

133



500

400

300

Stress
(MPa)

200
0 ! .... experiment

100 Analysis

0
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Strain (m/m)

Figure 64. 900 SCS6/Ti-15-3 Response at 25*C as Predicted by the
Linear-Elastic Statistical Interface Model and Experiment
(68)

still in the elastic regime at the load levels presented since the experi-

ment and analysis do no* deviate from one another under these condi-

tions. Even though the composite's response is nonlinear, the matrix

has not yet exceeded its yield stress, and the nonlinearity is a result of

the interfacial failure.

Further insight into the characteristics of the model may be gleaned

by examining the average interfacial stress, aiAvc, and average interfa-

cial displacement, UIAVG, throughout the loading sequence as calculated

by the mathematical model. Such a plot is presented in Figure 65 for the

same conditions as in the previous figure only in this case the loading

wvas continued until near complete interfacial failure (450 MPa applied
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composite load) had occurred. Several features of this curve are note-

worthy. First, no appreciable displacement occurs at the interfaces until

the average interfacial stress reaches approximately 120 MPa. Also, the

average interfacial stress is never greater than 150 MPa even though the

interfacial failure strength is 250 MPa. This is due to the statistical rep-

resentation where all points in the random distribution above 250 MPa

are said to have failed, and hence their associated stress drops immedi-

ately to zero resulting in an average interfacial stress for the composite

much less than the interfacial failure strength. In addition, except for

the regions near the axes, the curve in Figure 65 could be approximated

by a straight line extending from the average interfacial stress axis at
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approximately 160 MPa to the average interfacial displacement axis at

approximately 0.0065 fiber diameter as shown by the dashed line. This

characteristic will be employed later when the interfacial model is

adapted to the inelastic nonlinear micromechanics model.

The above discussion presents the characteristics of the statistical

interface model under monotonically increasing load. Similarly, it is

important how well the model captures the effects of interfacial failure

during unloading. Therefore, appropriate relations must be developed

that control the average interfacial behavior during unloading. The only

assumption required is that while the interfacial stress is decreasing, no

new interfacial failures occur until the interface is loaded to its previous

maximum value. Hence, no displacement occurs at all intact interfaces

and interfaces where the normal stress, ai, is less than zero which repre-

sent the interfaces that have reclosed under a compressive load. A new

quantity is now defined which describes the stress point in the random

distribution at which all separated interfaces begin. This quantity is

termed the separation stress, osep, and is defined by the following rela-

tion:

Ofa for ammax !5 am < C

s , 4( Gf-fmm) for -(Of-aMMW)!Om<gam< (130)

0 for - 0 m <- (of" )

where am is a function of time, t, and am.. is its maximum through the

present time, to
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amm= - max [ON(t)] 0 :5 t :5 to (131 )

The separation stress, asep, of Eq (130) now replaces of in Eqs (120)

and (125) for all calculations. This new value is more general than the

original formulation and will apply throughout the loading sequence for

both loading and unloading. An example is depicted in Figure 66 where

the composite is loaded monotonically to 320 MPa followed by complete

mechanical unload to 0 MPa and then reload to 340 MPa. The arrows in

the figure are to avoid confusion in visualizing the correct load-unload

path. The initial increasing load follows the original path already de-

picted in Figure 64, but upon unloading the response traces out a new
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Figure 66. 900 SCS6/Ti-15-3 Response as Predicted by the Linear-
Elastic Statistical Model for a Load-Unload Sequence
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curve that falls below the original one. Once the vast majority of the

separated interfaces reconnect through compressive stresses, then the

unloading curve rejoins the original response. Upon further reload, the

response again follows the previous unloading curve until all curves re-

join at the 320 MPa applied stress level where interfacial failure occurs

once again. The hysteresis in the load-unload sequence represents the

energy absorbed through interfacial bond failure. Therefore, the

composite is initially elastic during unloading and reload since no

energy is absorbed through the failure of new interfaces. However, once

interfacial failure again becomes prevalent upon further reload, then in-

elastic behavior is observed.

The average interfacial stress and average interfacial displacement

for the above load-unload sequence is presented in Figure 67. This

curve exhibits similar behavior as observed in the composite response.

During the initial increasing load the interfacial stress and displacement

follows the original curve of Figure 65, but upon unload it follows a dif-

ferent path that is elastic and approximately linear until it reconnects

with the stress axis. As before, reloading follows the unload curve until

it finally rejoins with the original curve. It is worthy of note that the

unloading curve does not intersect the stress axis at 0 MPa, but rather at

a negative stress of approximately -80 MPa. This is due to the random

distribution of stresses so that even while the average interfacial stress

is zero a portion of the interfaces will still possess positive displace-

ment. An additional illustration is given in Figure 68 where the average

interfacial stress and displacement are plotted for three consecutive

load-unload sequences to 320 MPa, 360 MPa, and 400 MPa, respective-
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Figure 67. Average Interfacial Displacement and Stress for 900
SCS6/Ti- 15-3 at 25-C with Load-Unload Sequence

ly, followed by a final loading to 450 MPa. Each unloading curve re-

turns to approximately the same point on the stress axis with only a de-

crease in slope occurring for each successive step.

This last observation will be used in the adaptation of the above

statistical model for an elastic material to the nonlinear inelastic micro-

mechanics relations already developed. The micromechanics formula-

tion of chapter 3 operates on a unit cell approach which approximates

the composite by assuming a representative fiber/matrix cell possessing

average properties. Therefore, to incorporate the effects of interfacial

failure, the appropriate average behavior of the interface is desired, and

Figure 68 presents such a plot of the average interfacial behavior. Fur-
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ther simplifications are desired so the computational requirements will

not be so intense. The inelastic micromechanics computations

sometimes require hundreds of iterations per load point, and the full sta-

tistical representation of the interface would be too limiting for such.

6.2 Statistical Interface Applied to the Micromechanics Formulation

The application of the interfacial failure model of the previous sec-

tion to the micromechanics formulation requires both a simplification of

the statistical interfacial model and a numerical algorithm for

incorporating the nonlinear effects of the interface into the microme-

chanics solution. The algorithm should be computationally efficient,
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and it must not produce instabilities in the already existent nonlinear

material algorithms described in chapters 4 and 5 for the elastic-plastic

and elasic-viscoplastic materials. The basic assumption for applying the

interfacial failure model to the micromechanics solution is that the basic

behavior of the average interfaclal stress and displacement is not greatly

affected by the inelastic deformation of the matrix material.

Simplifying the average interfacial behavior involved approximating

the characteristics exhibited in Figure 68 by a series of straight lines.

Three quantities, Olf, Olc, and uI, are specified to control where the

lines intersect with the axes. An example is shown in Figure 69 where

the interface remains intact until interfacial failure begins to occur at

il" . Then the interfacial stress drops and the interfacial displacement

If

t

o 1AVG I

n!

0

aleUlf

UlAVG

Figure 69. Simplified Interfacial Behavior for the Micromechanics
Formulation
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increases to follow the failure line that intersects the displacement axis

at Ulf . If the interface experiences unloading, then the response is

modeled as linear-elastic behavior between the point along the failure

line where unloading began and the point oac on the stress axis. The

slope of the unloading curve is simply the inverse of the interfacial

separation compliance normal to the interface, S8, where the equation

for the displacement of the interface originally defined in Eq (II) is

modified to include the effects of oIc as

n- a So ( - od) S( (132)se On,ý 19 C

where all quantities except oIc are the same as originally defined in Eq

(11).

The original equation for the longitudinal sherar displacement of the

interface along the fiber, Eq (12), remains unchanged. However, shear

failure of the interface may occur under either positive or negative

stress, so therefore, the interfacial failure model under these conditions

will possess a failure curve similar to the one depicted in Figure 69 only

with an additional curve that is its mirror image for negative stress (Fig-

ure 70).

The nonlinear micromechanics formulation may now be achieved in

the same manner as was described in chapter 3. The resulting equations

are the same as were already derived except for Eq (43) which is now
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modified to read

SOllf ! (a lm 'a If) AT

a(a2m- x2f) AT+ a S~j

[933f - 8a3m-a3f)AT + La 2 I2P 1 m1 -11 - EI

a162 - 33
(133)

where all quantities are as defined in chapter 3.
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The solution of these equations requires the defining of an additional

parameter which controls the failure point of the interface (Figure 7 1).

The quantity, uc , and its associated intercept point on the failure line,

G', defines the maximum point of linear-elastic behavior for an

interface before further failure will occur. This represents the upper end

of the linear-elastic unloading curve whose intercept along the stress

axis will be o Ic for the normal direction and zero for the tangent or

shear failure direction.

The numerical algorithm for solving the interfacial failure model

coupled with an inelastic matrix material using the micromechanics rela-

tions is presented below. It represents the solution sequence employed

to achieve convergence for a single load increment.

Gk f •n (normal)
c k- or

t (tangent)

ucs Ukf

Figure 71. Sample Critical Point of Failure for Each Interface Re-

gion, s
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(1) Assume linear-elastic behavior and no interfacial failure for

the first iteration. Therefore, set

F. r oij r (134)

and

up , (135)

for each matrix region, r, and each interface region, s, where

the subscript, o, indicates the value from the previously con-

verged point.

(2) Calculate compliance values, Sk 8 ' for each interface, s, by

F C 4 kfl I k k-n,t (136)ks Tkf kf

Sn a(on= , o71d (137)

ts u (138)

(3) Solve for all region stresses using the micromechanics rela-

tions.
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(4) Initialize the iteration counter to one, and the change in the

critical failure point, 8u to zero.

bUks-0 and pl I (139)

Iterate

(5) Check if interfacial failure occurs during this load increment.

(a) For all interfacial regions, s, that satisfy

3Ones!50 and 8u, = 0 (140)
nsn3

set

n (141)

otherwise set

8u0 -afISb a a(On- (142)

(b) For all interfacial regions, s, that satisfy

Iot -IFc<1 0 and u'5 - 0 (143)

set
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buts M 0 (144)

otherwise set

6u -afIS8 at- ~ (145)

where fl is a user supplied convergence parameter between 0

and 1.

(6) Determine new critical point along failure curve for all inter-

face regions, s.

Puts W Pu-ut k-nt (146)

(7) Determine new inelastic strain, Eij r' for all matrix regions

using the appropriate algorithms described in chapters 4 and 5.

(8) Calculate new interfacial compliance values, S 8 , for each in-

terface, s, by Eqs (134-136).

(9) Solve for all region stresses using the micromechanics rela-

tions.

(10) Check for convergence by comparing the norm of the region

stresses calculated before and after the iteration or by some
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other equivalent method. If convergence has not been

achieved, then p - p+ I and repeat steps 5 through 10. If con-

vergence has been achieved, then stop iteration and calculate

all remaining stresses and strains.

The above algorithm meshed well with the inelastic matrix material

algorithms of chapters 4 and 5, and it for the most part did not add

significantly to the number of iterations required to achieve conver-

gence. The unidirectional composite solutions were normally obtained

in a matter of seconds even under highly nonlinear loading conditions.

6.3 Micromechanics Solutions of Interfacial Failure

The viscoplastic material properties from the SCS6/Ti-15-3 compos-

ite were employed with the interfacial model of the previous section and

comparisons were made with available experimental data. The effects of

interfacial damage on the composite behavior is most prevalent in the

transverse normal (90° to the fiber axis) and longitudinal shear (shear

parallel to the fiber axis responses. Unfortunately, very little experi-

mental data is available for the transverse normal response, and none for

the longitudinal shear. Majumdar and Newaz (68) have characterized

the response of 900 SCS6/Ti-15-3 at room and elevated temperature.

The room temperature response is presented in Figure 72 where the

micromechanics solutions of an unbonded fiber/matrix contact and the

interfacial failure model described in the previous section are compared

to two experimental test results of the Majumdar and Newaz study (68).

The micromechanics model possessing a finite interfacial bond strength
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with progressive failure provides a more exact representation of the ex-

perimental results. If an unbonded interface is assumed, then the char-

acteristic 4knee" in the stress-strain response occurs at approximately

150 MPa which is 100 MPa lower than is observed in the experimental

data. The micromechanics solution that contains the interfacial failure

model delays the nonlinearity, providing a more realistic approximation

to the actual behavior. The interfacial properties employed for the

SCS6/Ti- 15-3 composite normal to the interface are listed in Table 10.

These properties were approximated from the room temperature (250C)

and elevated temperature (5380C) monotonic response and were used for

all the various calculations. The parameter, a, used in Table 10 to

normalize the failure intercept on the displacement axis, un f, is the char-

600

500

Stress
(Mpg) 3

0- Micromrchanics with Interfacial Pailue

-- -- Micromechanics with Unbonded Interface
100 - --. Bxperiment

r i - - I I

0 0.003 0.006 0.009 0.012 0.015

Strain (m/m)

Figure 72. 900 SCS6/Ti-15-3 Monotonic Response at 25 0 C - Inelastic
Micromechanics and Experiment (68)
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Table 10. Normal Interfacial Properties Employed for the SCS6/Ti-

15-3 Composite

Oaf GIC Unf/a

259C 130 MPa -75 MPa 0.04

538"C 100 MPa -75 MPa 0.04

acteristic fiber dimension of Figure 9.

Additional understanding of the constituent interaction may be ob-

tained by analyzing the constituent microstresses. Figure 73 presents

the average stress in the fiber and matrix as functions of the composite

strain, and the calculations were performed using the micromechanics

relations with interfacial failure. The stress plotted is the volumetric

average for each constituent in the direction of loading or perpendicular

to the fiber. Initially, the fiber is experiencing a compressive stress of

184 MPa and the matrix a tensile stress of 95 MPa. As the composite is

loaded, the compressive stress of the fiber is replaced by a tensile stress

that reaches 130 MPa before interfacial failure begins to occur and caus-

es a gradual decrease ia the average fiber stress. The average stress in

the matrix continues to increase throughout loading. Since the fiber is

prevented from carrying the load due to failure of the interface, more

load is carried by the matrix than if the interface had remained intact.

Also, since the average matrix stress is approaching 600 MPa, it is like-

ly that a substantial amount of the matrix material has locally exceeded

its yield stress of 800 MPa even though the composite is loaded well

below this value.
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800

600

400 - -Average Stress in Fiber

Stress - Average Stress in Matrix
(MPa) 2

200

0 0.003 0.006 0.009 0.012 0.015

Strain (rn/r)

Figure 73. Average Constituent Transverse Normal Stresses for 90*
SCS6ITi-15-3 at 25"C for Monotonically Increasing Load

The longitudinal and transverse strain is presented in Figure 74 for

the monotonic loading at room temperature. Additional experimental

data from Lerch and Saltaman (74) Is also plotted to display the inherent

experimental error existent when attempting to measure the strain in the

fiber direction, e I,, while loading perpendicular to it in the direction of

the transverse strain, e22. The strains in the fiber direction are an order

of magnitude smaller than those in the loading direction and this mea-

surement is normally taken over a specimen of very limited width.

However, the micromechanics solution is in good agreement with the

two experimental results over the strain range presented. The decrease

in the slope is indicative of damage as opposed to plasticity. This is as
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-0.001 Ex Bperiment (68)
E-- xperiment (74)

40008 - Micromechanics

-0.0006 -
£11

40004

0 I I

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

sn

Figure 74. Longitudinal vs. Transverse Strain for 90* SCS6/Ti-15-3 at
250C Loaded Monotonically (68, 74)

expected since failure of the interface dominates the transverse

behavior.

Comparison to experimental data at 538°C is presented in Figure 75.

Just as was observed in the room temperature case, the unbonded micro-

mechanics solution under-predicts the point where the initial "knee" in

the curve is seen. The difference between the unbonded and interfacial

failure model is more pronounced in this elevated temperature case be-

cause the residual thermal stresses are not as large.

The constituent microstresses presented in Figure 76 also exhibit

similar behavior as was observed in the room temperature calculations.

The main difference is that the residual thermal stresses in the fiber and
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400

Experiment
- Micromechanics with Interfacial Failure

300 - -Micromechanics with Unbonded Interface

Strata
(MPa) 200

100

0
0 0.005 0.01 0.015

Strain (m/m)

Figure 75. 90" SCS6/TI-15-3 Response at 5380C - Inelastic Microme-
chanics and Experiment (70)

matrix at the beginning of the applied mechanical load are much smaller

and the average stress in the matrix at the maximum applied load does

not achieve as large a value than in the room temperature results. The

yield stress for the matrix at this temperature is approximately 400 MPa.

Therefore, since the average matrix stress is close to this value at the

end of loading, then it is apparent that most of the matrix has yielded.

The effect of interfacial failure on the through-the-thickness strain,

E33, is presented in Figure 77 for both room and elevated temperatures.

Both curves may be characterized by three stages. The first stage is

limited to linear-elastic behavior of the composite where the ratio of the

strains are controlled by the elastic Poisson's ratio. The second stage
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600

500 - Average Stress in Fiber

-Average Stres, in Matrix
400

300

Stress
(MP&) 200 .

100 , . . .. . . .

0

-100 ,

0 0.002 0.004 0.006 0.008 0.01 0.012

Strain (m/=)

Figure 76. Average Constituent Transverse Normal Stresses for 90@
SCS6/Ti-15-3 at 5380C

-0.004

-0.003 -53-........,.C..'

£33 -0.002

-0.001

0

0 0.002 0.004 0.006 0.008 0.01 0.012

922

Figure 77. Transverse and Through-the-Thickness Strain for Monotoni-

cally Transverse Loaded SCS6/Ti-15-3
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commences when a decrease in the slope is observed. This is where in-

terfacial failure is predominant, thus, resulting in a reduced Poisson's

ratio. In the final stage the slope increases due to the plastic deforma-

tion of the matrix. The Poisson's ratio in the matrix approaches the

plastic value of one-half, and as a result, the Poisson's ratio of the com-

posite necessarily increases according to the constituent interaction.

The inelastic composite response during unloading is a'so effected

by interfacial failure as it was for the elastic material (see Figure 66).

An example of some micromechanics calculations during mechanical

load and unload sequences as compared to experimental data at room

temperature is displayed in Figure 78. The maximum strain observed in

the experiment for each loading sequence was attained in the microme-

600

500

400

Stress 300
(Mpg)

-"Experiment
200 M c romec hanicsI

0
0 0.003 0.006 0.009 0.012 0.015

Strain (m/m)

Figure 78. 900 SCS6/Ti-15-3 Response to Load/Unload Sequences at
250C (68)
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chanics solution before beginning the unloading portion. The return

slope realized in the experiment is matched very well in the microme-

chanics results. This return slope is effected by the amount of interfa-

cial failure that has occurred during increasing load. If very little inter-

facial failure occurs, then the unloading response will be very stiff with

a return slope similar to that experienced during the initial elastic por-

tion of the curve. If a significant amount of interfacial failure does

occur, then the unloading response will be much weaker than the initial

elastic modulus. Such characteristics are observed in both the microme-

chanics solution and experimental results (68). A further comparison of

a load-unload sequence at the elevated temperature of 538°C is dis-

playd in Figure 79, and it exhibits similar characteristics as in the room

250

-Experiment
200 -Micromchanics

ISO-

(MPa) I'10 -

100

50 , •' "

0
0 0.001 0.002 0.003 0.004 0.005

Strain (m/m)

Figure 79. 90* SCS6/Ti-15-3 Response to a Load/Unload Sequence at
538-C (69)
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temperature results

The modified statistical interfacial failure model that has been de-

veloped and incorporated into the inelastic unidirectional micromechan-

ics formulation as described in section 6.2 has been shown to provide

good agreement with available experimental data for characterizing the

fiber/matrix interface. In addition, previous chapters have presented the

application of the unidirectional micromechanics formulation to both

elastic-plastic and elastic-viscoplastic materials with temperature depen-

dent properties. Therefore, the groundwork Is well laid for the develop-

ment of a nonlinear laminated composite analysis that can examine the

effects of all these various phenomena on the macromechanical behavior

of laminated composites. Such a formulation is presented in the follow-

ing chapter, and where it is appropriate, comparisons are made with pre-

viously published analytical or experimental data.
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VII. Nonlinear Laminate Analysis

Very few applications involve the use of unidirectional fiber rein-

forced composites; rather, laminated layups are used where the fibers of

each individual unidirectional ply are oriented at different angles from

other plies. Therefore, it is important for a micromechanics analysis to

address this and attempt to relate the micromechanics to the macrome-

chanical behavior of the laminate. For linear-elastic cases this may be

accomplished by simply employing the linear-elastic classical laminated

plate (CLP) theory for composites (3). CLP theory takes the elastic

orthotropic material properties of each lamina or ply and assembles them

through various linear transformations to produce an approximation of

the elastic material properties of the entire layup or laminate. More-

over, if only linear-elastic behavior is desired, then the linear-elastic

properties of the unidirectional ply may be obtained from the microme-

chanics formulation and employed in the CLP theory. However, this is

not possible if a nonlinear analysis of the macromechanical behavior of

the laminate is desired.

A nonlinear analysis requires a direct formulation from the microme-

chanics level to the laminate. Other micromechanics formulations such

as Aboudi's method of cells (42) accomplish this indirectly by calculat-

ing the laminate elastic properties and equivalent plastic forces and

moments from the micromechanics after each load increment. The in-

elastic strains from the previous increment are used to determine the

equivalent plastic forces and moments. The accumulated error from this
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process is assumed to be slight for small increments. Such an approach

is very versatile but greatly increases the computational requirements

due to the small load increments which must be used. The present for-

mulation will eliminate this difficulty through direct assembly of the mi-

cromechanics equations up through to the laminate level.

7.1 Basic Nonlinear Formulation for Laminates

The basic tenant of the laminate formulation in the present analysis

as well as several previous formulations by other researchers is that the

CLP theory assumptions for strain throughout the laminate still apply

(35, 38, 42). This is a reasonable supposition because it is the initial as-

sumption made in the CLP theory and not tied to the linear-elastic equa-

tions. It simply states that any plane perpendicular to the midplane be-

fore deformation remains both plane and perpendicular to the midplane

after deformation. Therefore, the strain at any point in the laminate may

be related to the strain at the midplane by a curvature vector and the dis-

tance that point is from the midplane. The succeeding sections present

the micromechanics to macromechanics formulation that was applied to

the micromechanics equations of chapter 3 to provide for the direct cal-

culation of nonlinear composite laminate behavior.

7.1.1 Basic Assumptions for Laminate Analysis

A composite laminate with its associated applied in-plane forces is

presented in Figure 80. The condition that all planes perpendicular to

the midplane before deformation remain perpendicular after deformation
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requires that the out-of-plane shear strains are zero (3). Therefore,

Yxz , Yyz = 0 (147)

Also, at the laminate level it is assumed that the through-the-thick-

ness normal stress can be neglected. In other words, a state of plane

stress exists, so therefore,

02 = 0 (148)

Equations (147) and (148) imply that only the in-plane stresses and

strains are necessary in determining the response of a laminate to an ap-

plied load. However, it should be noted that Eq (148) does not imply

N YX

y IF

Figure 80. In-plane Forces on a Composite Laminate
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that the constituents possess no through-the-thickness stress, for a state

of plane stress certainly does not exist at the microscopic or microme-

chanics level. However, at the laminate and ply level Eq (148) is as-

sumed to be valid, and hence, the stresses and strains for the laminate

and each ply may be examined from a two-dimensional standpoint and

can be expressed as

(6) Yxy and (a) -(a(14)

In addition to the in-plane applied loads, there may exist applied

moments at the edges of the laminate such as are depicted in Figure 81.

These moments at ie edges of the laminate as well as the in-plane loads

are specified on a per unit length basis, and upon adopting a similar no-

tation as is used in Eq (149), the laminate in-plane loads and moments

are expressed as

(N) Ny and (M)- MY (150)
N x 

Mxy

The CLP theory assumption for strain at any point in the laminate

may be given by the following equation
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M YX

y z

Figure 81. Moments on a Composite Laminate

or simply as

W (OF-) + z {0 (152)

where the prescript, o, indicates the value of strain at the midplane and K

is the curvature of the laminate surface.

The stress in the laminate may be related to the applied forces and

moments by invoking equilibrium through various cross-sections of the

laminate and integrating. Performing such an exercise results in the fol-

lowing integral relationships for the applied forces and moments and the
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laminate stress:

(N) - {a)dz - If Yk dz (153)f ' k -1 k-,

(M)} = 1 z dz M {Okz dz (154)
f t2 k- I fzk-I

where t is the thickness of the laminate, n is the number of plies and Zk

is as defined in Figure 82.

If It is assumed that the stress in each ply is approximately constant,

then the stress vectors may be pulled outside the integrals in the above

equations, and the applied forces and moments can be related to the ply

n _n

Figure 82. Ply Numbering Sequence and Distances from Midplane
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stresses through the matrix equation

N) . AA2 An]) (155)

where if the 3x3 identity matrix is represented by I, then

Ak"- (Zk- Zk-l)1 (156)

Bk = I£ (zi 'zi.l)I1 (157)

Equation (155) cannot be inverted in its present form. Therefore,

the vector of applied forces and moments on the left-hand side is

extended by the ply stresses in ply numbers 3 to n, and the matrix is ex-

tended by placing a unit matrix in the lower right-hand corner that be-

gins in the 7th row and column. Thus, a square matrix, H, is developed

which may be inverted to relate the applied forces and moments to the

various ply stresses.

N I(a),~
1) (Q)2(

(0)3 H (0)3 (158)

where
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A A2 A3  An
B1 B2 B3  Bn

H 0 0 0 0 (159)

0 0 0 - 0

Equations (152) and (159) are formulated in the global or laminate

coordinate system, but the micromechanics formulation is based on the

individual ply or lamina coordinate system which is determined by the

fiber direction. Figure 83 depicts the two coordinate systems and the

angle, e, used to transform between the laminate coordinate system and

the ply coordinate system. The linear transformation of coordinates

must be made at each iteration, and therefore, this transformation is em-

bedded in the formulation because it must be calculated at each step.

The transformation of ply stresses may be given by

2 •e x-y is the laminate co-
1 ordinate system

e • 1-2 is the ply coordi-
nate system

x The z and 3 axes always
point in the same direction
(out of the plane)

Figure 83. Laminate and Ply Coordinate Systemns
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where

C08 2 e0 sin2 e8 2 sin0cose
T - sin2 COS2 - 2sin e cos e (161)

-sin cos 0 sinecoo COS 2 e-sin2e

Also, the transformation of strain is accomplished similarly as

2 T IYY (162)

The relations presented in this section apply to the various plies of a

single laminate. The micromechanics equations must be assembled to-

gether with these equations to provide for a nonlinear micro to macro-

mechanics analysis. The following section presents the micromechanics

equations with the necessary modifications required for inclusion in a

laminate analysis, and then a subsequent section discusses the assembly

of all these equations to produce a general laminate analysis.
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7.1.2 Micromechanics Equations for Laminate Analysis

The micromechanics equations presented in chapter 3 must be pre-

sented in a different format when applying them to a laminate analysis

from the format already given because certain conditions apply which

were not considered in the unidirectional case. For instance, the normal

stress, 033, of the composite is always assumed to be zero. In addition,

the through-the-thickness shear strains, Y13 and Y2 3 , are also zero. These

as well as other requirements must necessarily be incorporated into the

micromechanics relations.

The condition that the normal stress, 033, of the composite is always

zero implies that the normal stress, 033, on each ply is also zero. There-

fore, the unidirectional micromechanics equations must reflect this, and

so Eq (30) is now simply

a c33m3 + b 033m2 - 0 (163)

where it is recognized that the stresses listed as composite stresses in

the unidirectional formulation of chapter 3 now become the ply stresses.

In addition, all the equations involving the through-the-thickness

shear strains, Y13 and Y23, do not need to be considered because these are

assumed to be zero in accordance with the laminated plate theory as-

sumptions. All other equilibrium and continuity conditions remain un-

changed.

However, the equation simplification at the micromechanics level

takes a slightly different path for the laminate analysis than it did for
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the unidirectional investigation. For example, even though the shear

stresses and strains decouple from the normal stresses and strains at the

micromechanics level, they do not at the laminate level, and hence, the

shear stresses and strains in the 1-2 direction must be included in the

overall formulation and cannot be considered separately as was done for

the unidirectional formulation of chapter 3. Also, the stress and strain

for a single ply is interrelated to the stress and strain in all other plies,

so all these values must also be related. Therefore, the micromechanics

equations may be reduced to the following general form for a single ply

"•11m

p °~~llf

where the inelastic strain term for each region, r, is represented by

' 3x31 (165)
EI2
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and the forcing vector by

alpAT

- (a x2f + b a2m) AT + aS •I Gl

(aim- air) ATI (a2- a2f) AT + aS1% (166)
) aa3m" a3f) AT + a S 8Il

'a22

T12

The first five columns of the matrix, P, are

1 0 0 -Sllf -S2

0 -(a + b) 0 aS12 aS+bS22m+aSnjl

0 0 0 5 1f Sf- S12m

0 0 0 aS12f a(S22,- S22m+ SAI)
(167)

0 0 0 aS12f a(S23f- S23.)

0 0 a2

(a+b) (a+c)

0 0 0 0

0 0 (a+b) 0 0

S44maA +b 16
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and the last three columns are

o •s•f 0

bS 2m b(S23m- SW 0

- S - S12m- b S 1f 0

C - aS L -2 ÷ b) S U + b (s22- S W -C

-as8m D 0

(a+b) (a+c) (a+c) S (a+c)

CS11m 0

(a+c)s Sm (a.c) SU

0 0 0

where the values A, B, C, and D are given by

B -S~44+ý(SW S7 ) (170)
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0= (a+b) (S12m- S 12m (171)

D=(c+bfl -S22m -aS22m- b (SW+ Sni2) (172)

The first four columns of the matrix, PI, are

0 0 0 0

0 b 0 0

-1 0 0 0

-(a+b) S b 0 0

(173)
0 0 -a 0

0 0 0 0

c 0 0 0
(a+c)s m

0 0 0 -b

The second four columns of the matrix, PI, are
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0 0 0 0

0 0 0 0

o 0 0 0
0b 0 0

(a+b) 522?= a- SOUM b 0 0

I~ SflM

20 -C 0 (174)
S11 m

ac 0 0 0
(a+b) (a+c) S im

- 0 0 0
(a+c)S 12

0 0 0 bc/a

(aA b) (1+0 S44

and the last four columns of the matrix, PI, are
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0 0 0 0

0 0 0 0

0 0 0 0

a -a 0 0

-c 0 c 0
S11 M (175)

-ac 0 0 0
(a+b) (a+c) S 11m

0 0 0 0

o 0 0

The above relations are now assembled in the subsequent section by

employing the laminate relations outlined previously for the stresses and

strains in a laminated composite under any arbitrary angle layup.
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7.1.3 Micro to Macromechanics Equation Assembly

In order to avoid confusion between the use of the two coordinate

systems (laminate and ply), a convention will be adopted and followed

throughout this section where all stresses and strains that are in the glo-

bal or laminate coordinate system will be written using Greek symbols

and all stresses and strains that are in the local or ply coordinate system

will be written in English symbols. Therefore, the micromechanics

equations from the previous section may be rewritten as follows:

[P ]f k I . {f k [Jxl2Ik ( (176)

where the subscript, k, denotes the particular ply, and the ply stresses

and strains have been separated out in the vectors where they appear.

Hence, sor and fk represent 5xl vectors where the former is all the

region stresses of Eq (164) and the latter is the vector, f, in Eq (166).

Also, the vector of inelastic strains contains all the matrix regions for a

single ply.

From Eq (162) it can be shown that

(ik) - [T1"T k) (177)

Also, if the first three columns of the P matrix in Eq (176) are separated

out, then by employing Eqs (177) and (160)
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Fsxlk[k(T](k) + [8'X] ks~S - ~ ~k [i 1 (4x(78

where the ply stresses and strains have been transformed into the global

or laminate coordinate system.

Further, by employing equation (152) the micromechanics relations

of Eq (178) may be cast in terms of the laminate midplane strain and

curvature as

8x [T T[1 011 OK" +j I [BIk~

1' 1 (179)

j[T]kj Ji [8z'jk

where i is the distance from the midplane of the laminate to the center

of the given ply, k.

Eq (179) applies for each individual ply. Therefore, a larger set of

equations for all plies of the composite system may be assembled. Such

a set of equations for all plies I through n of a given composite system

are given below in a single matrix format as
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TP1PBI 0 .0 K

oT 0 .. sni f2•

0 o

fn
n (180)

0 0 0 n [Px,]el
Tr1 0 0 0
0 0 .. 0 0(Y [P 12 ]

0T

L0 ....Trj [Pin]elh

where the quantity, PT, is defined as

[PT]k =PA]k[T]jT[ I lk] (181)

Also, from Eq (158) it is recognized that

a2 -IM

(31 Hj 3 (182)

Therefore, substituting Eq (182) into Eq (180) results in
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Oe

[P1FPN 0 0 1C 0

Fl' 2 0 0+ s

LPTn 0 0 N

(183)

ani

\[PIi]eI,
[Pi.1]h

where

00 .. 0-
Tj 0... 0
0 - 0 T2 [ H (184)

0 ''0
0 " 0

_0 ...... Tn_

Each zero term in Eq (184) represents a 5x3 zero matrix, so consid-

ering that [H] is a 3n x 3n matrix as defined by Eq (159), then the matrix

[TH] is an 8n x 3n matrix. If all but the first six columns of the [THI

matrix are moved to the left-hand side of the equation, then a final form

for the micro to macromechanics equations is obtained which relates the

composite strain and region and ply stresses to the applied thermome-
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chanical load and existing inelastic material strain of each region. The

general form of this relation is

or.

K[PT1 PB1  0 .. 0 TH 13 TH14  THIA 5l2n

Pr 2  0 PB2 0 TH23 TH .. TH~

Frn 0 0 .. P%~ THU3 TH, 4  T 0nj 3

04

(185)
on

f J[PI2 elel

10 + IH 21 1M22 J(N) P 3 e

1[Pi,,}el,

where each TH term represents an 8x3 matrix, each P3 term is an 8x5

matrix, and each PT term is an 8x6 matrix defined by Eq (181). There-

fore, the controlling matrix premultiplying the vector on the left-hand

side of the equation is an 8n x 8n matrix which may be inverted to ob-

tain the overall laminated composite inelastic response.

Equation (185) when coupled with the micromechanics equations of

chapter 3 as modified in section 7.1.1 and the nonlinear formulations of

chapters 4 through 6 results in a very versatile three-dimensional nonlin-
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ear micromechanics formulation which may easily be applied to the mac-

romechanical behavior of laminated composites. The method is compu-

tationally efficient as the load is automatically distributed between the

various plies according to the classical laminated plate theory assump-

tions by assembling a matrix formulation that extends from the microme-

chanics all the way through the laminate level.

7.2 Laminate Analysis Results

A computer program has been developed in conjunction with this

study which solves for nonlinear composite behavior of symmetric lami-

nates by assembling the equations described in the previous section and

employing the various nonlinear material and interfacial failure models

of chapters 5 and 6 along with their respective algorithms. Results from

the present formulation were compared with Aboudi's method of cells

(75), the finite element and experimental results of Lerch and Melis

(76), and the experimental results of Nicholas et. al. (67).

First, results from monotonic quasi-static loading was investigated

and compared with available data. Then, a parametric investigation was

undertaken to examine the effects of various types of loading on the in-

elastic composite behavior. For instance, the effect of different levels

of interfacial failure on the strain accumulation during cyclic loading as

well as the effect of various loading rates on the composite response.

Also, the effects of in-phase and out-of-phase thermomechanical fatigue

(TMF) loading on the laminate behavior was also investigated. Lastly,

comparisons with experimental data from TMF tests and fatigue life pre-

dictions using the present approach coupled with the Linear Life Frac-
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tion Model (LLFM) are made (77).

7.2.1 Quasi-Static Results

Investigations into the inelastic behavior of various SCS6/Ti-15-3

layups have recently been conducted (75, 76). The present formulation

is compared to some of the results of these studies to validate the analy-

sis. For instance, Figure 84 presents the longitudinal response of a

[0/± 151 s SCS6/Ti-15-3 layup as calculated by the present method and

Aboudi's method of cells. Both analyses predict essentially the same re-

sponse. The matrix material was assumed to behave according to the

Bodner-Partom unified viscoplastic theory with isotropic hardening.

3000
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1000
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Figure 84. [0/±l5]3 SCS6/Ti-15-3 Longitudinal Response as Calculated
by the Present Analysis and Aboudi's Model (75)
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This material model is the only one presently available in Aboudi's

model, and hence, was employed with the present analysis along with

the same material constants that were used in Aboudi's study so that a

direct comparison could be made. Cooldown was simulated by a change

in temperature of -I I 11.°C before the mechanical load was applied.

A further comparison with the [0/±I 5Is layup is presented in Figure

85 for the in-plane shear response of the laminate. The two approaches

again s Mw excellent agreement with a maximum percent deviation be-

tween the two of less than 10% at any point. Both methods predict the

onset of inelastic behavior at approximately 450 MPa, and the same

trend is observed here in the laminate analysis as was found in the unidi-
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Figure 85. [0/±151 SCS6/Ti-15-3 In-Plane Shear Response as Calcu-
lated by the Present Analysis and Aboudi's Model (75)
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rectional results of chapters 4 and 5 when in-plane shear solutions were

compared between the present formulation and Aboudi's method of cells

model. The present analysis predicts a slightly stiffer response than the

method of cells for in-plane shear, but as was discussed in these earlier

chapters, this is consistent with the assumptions of the two models.

Results from a [0/±45]3 laminate is displayed in Figure 86, and just

as for the [0/± 15] case, the two mathematical models are in excellent

agreement. The slightly weaker response of Aboudi's model is most

likely due to the 450 plies which contribute to the overall composite re-

sponse largely through shear, and therefore, will produce a weaker re-

sponse in Aboudi's model as was previously observed for in-plane shear.
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Figure 86. [0/± 4 5 ]s SCS6/Ti-15-3 Longitudinal Response as Calculated
by the Present Analysis and Aboudi's Model (75)
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A final comparison with Aboudi's method of cells model is made in

Figure 87. A quasi-isotropic layup, [0/±45/9013, is considered and com-

parisons were made for its longitudinal response. The calculations em-

ployed a change in temperature of - I I I I.'C followed by the mechanical-

ly applied load. The method of cells approach assumes a perfect

fiber/matrix contact or strong interface. Therefore, two calculations

were performed with the present analysis. First, a strong interface was

assumed to compare with Aboudi's model, and then, calculations were

performed using the progressive interfacial failure model developed in

chapter 6 with the same interfacial parameters that were employed in the
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Figure 87. [0/±45/901J SCS6/Ti-15-3 Longitudinal Response as Calcu-
lated by the Present Analysis and Aboudi's Model (75)
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previous chapter for SCS6/Ti- 15-3. Only failure normal to the fiber was

assumed to occur, so shear failure in the 450 plies are not accounted for

in the calculations of Figure 86. The results demonstrate that the inclu-

sion of interfacial failure has a pronounced effect on the behavior. If

shear failure along the fiber was also considered, then there would be

even a greater difference between the strong fiber/matrix contact calcu-

lations and the calculations possessing interfacial failure. Therefore, for

composite systems that exhibit less than perfect fiber/matrix bonding, an

analytical model that employs some method for interfacial failure should

be used.

A limited amount of finite element data has been published for lami-

nated composites. Developing a reasonable finite element grid for vari-

ous layups is very difficult, and therefore, solutions from very simple

layups such as crossply laminates, (0/9013, are generally the most that

can be accomplished. Lerch and Melis (76) have performed nonlinear fi-

nite element calculations of an SCS6/Ti-15-3 crossply laminate with a

432 element gril on a CRAY YMP and compared their results to experi-

mental data. Figure 88 displays their results along with calculations

using the laminate analysis of the present study. The loading sequence

consisted of cooldown from 705*C which was assumed to be the stress

free state to 21 °C followed by monotonic loading. The finite element

calculations employed an elastic-plastic material model for the matrix

and assumed an unbonded fiber/matrix interface. The present analysis

employed the unified viscoplastic theory of Bodner and Partom with di-

rectional hardening for the matrix and the interfacial failure model of

the previous chapter for the interface. In this case, the present formula-

184



1200

1000 - Present Analysis1000 I-- -Finite Element .•

800 •••

nI pe im n t !

0 0.002 0.004 0.006 0.008 0.01 0.0 12

Strain (60/)

Figure 88. [0/ 9 0]s SCS6/Ti-15-3 Longitudinal Response as Calculated
by the Present Analysis with Comparisons to Experiment
and Finite Element Data (76)

tion agrees with the experimental results better than does the computa-

tionally intensive finite element calculations. The present formulation

assumes a more exact model of the fiber/matrix interface than the finite

element solution which assumes it to be perfectly weak. Therefore, sep-

aration of the fiber/matrix contact in the 90" plies occurs very early in

the finite element solution while it is delayed in the present analysis due

to the finite fiber/matrix bond strength until it more reasonably approxi-

mates the experiment.

A comparison of the transverse strain during loading for the crossply

laminate of the previous paragraph is presented in Figure 89. Just as

was observed for the longitudinal strain, the experimental transverse
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Figure 89. [0/901] SCS6/Ti-15-3 Transverse Strain Under Longitudi-
nally Applied Load as Calculated by the Present Analysis
and Compared to Experiment and Finite Element Data (76)

strain is more closely approximated by the present analysis than by the

finite element approach. In addition, both the present analysis and ex-

periment indicate a sharp decrease in the incremental transverse strain

during load at approximately 700 MPa. This corresponded to complete

interfacial failure in the micromechanics which would result in a de-

creased Poisson's ratio, and hence, less transverse strain during in-

creased load. Also, failure of the composite in the experiment occurred

at 1060 MPa which is beyond the point of complete interfacial failure as

predicted by the micromechanics. Therefore, if complete interfacial

failure is a mechanism that occurs in these types of composites before
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failure of the material, then a means of estimating when composite

failure is imminent may be achieved by accurately predicting the interfa-

cial failure.

Moreover, the present micro to macromechanics formulation can

reliably predict nonlinear laminated composite behavior under monoton-

ic and quasi-static loading conditions. Attempting to model the compos-

ite behavior with what some would consider to be a more mathematically

rigorous approach such as the finite element method meets with grave

difficulty due to the computational intensity and inability to produce

representative finite element grids. This was demonstrated in the Lerch

and Melis (76) study whose results are given in Figures 88 and 89. In

their study the nonlinear finite element results for a simple crossply

symmetric laminate under monotonically increasing load required the

use of a CRAY-YMP supercomputer. If more complex composite layups

or cyclic thermomechanical loading was desired, then the use of the fi-

nite element method would be prohibitive. All calculations of the

present analysis presented so far were performed on an Apple Macintosh

IIx desktop computer and for the majority of the remaining solutions

presented in the following sections with the exception of a few calcula-

tions which were carried out to several thousand cycles and performed

on a SUN 4 workstation.

7.2.2 A Parametric Study of MMC Laminates

Now that a reliable analytical tool is available for predicting the

nonlinear behavior of MMC laminates, the effects of various parameters

such as the type of layup, loading rate, and type of loading on the com-
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posite behavior and constituent microstresses may be examined. Thus, a

better understanding of the composite characteristics may be achieved

without the necessity of performing extensive experimental work. The

present section will look at the effects of these parameters, and in the

next section, some of the characteristics that were observed here will be

verified with comparison to available experimental data.

Figures 90 through 93 compare the effects of two types of loading on

the characteristics of a [0/9013 crossply laminate. In-phase, and out-of-

phase thermomechanical fatigue loads were applied to an SCS6/Ti-021S

composite layup. For both cases the composite was assumed to be stress

free at a processing temperature of 900*C and then cooled to room tem-

perature at 25*C followed by increasing the temperature to the desired

starting temperature for the loading. For the in-phase case this consist-

ed of 150°C and for the out-of-phase case it was further heated to

650°C. Each case was then loaded to 30 MPa before beginning the cy-

clic loading which corresponded to a triangular waveform for both the

mechanical load and temperature with a period of 180 seconds. The me-

chanical applied load was cycled between 30 and 300 MPa, and the

temperature was cycled between 150 and 650*C. Figures 90 and 91

present the stress-strain histories for the first and tenth cycles for both

types of loading. The thermal strain has been subtracted out so that only

the mechanical strain is plotted in each figure. A 35% fiber volume

fraction was assumed, and a weak interface was assumed so that

fiber/matrix separation occurs once the compressive residual stress at

the interface is overcome. The matrix material was assumed to behave

according to the Bodner-Partom unified viscoplastic theory with direc-
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tional hardening and the material constants for the model were the same

as used in chapter 5 where similar cyclic data were obtained for the uni-

directional composite. The trends that were observed in the unidirec-

tional calculations for in-phase and out-of-phase loading are very simi-

lar to what is presented for the crossply laminate. The out-of-phase re-

sponse is essentially linear elastic while the in-phase solution exhibits

significant viscoplastic deformation within the first cycle and accumu-

lates considerable permanent strain after ten cycles. Further insight is

gained by examining the maximum and minimum mechanical strain for

each cycle as plotted in Figure 92. The out-of-phase results produce

very little plastic strain accumulation over one thousand cycles. There-

fore, any strain accumulation that might be observed in an experiment
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Figure 92. [0/90]s SCS6/Ti-021S TMF In-Phase and Out-of-Phase
Maximum and Minimum Strain Histories
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would most likely be due to damage progression in the form of fiber or

matrix cracks rather than any viscoplastic relaxation of the material. On

the other hand, the viscoplastic effects for the in-phase load is very

prevalent up through the first one hundred cycles at which point the

stress relaxation of the matrix through viscoplasticity is nearly com-

plete.

The maximum constituent microstresses in the direction of load for

the 00 ply is plotted in Figure 93. The most dominant characteristic ob-

served in the microstresses is the difference in the maximum stress in

the fiber between in-phase and out-of-phase loads. For the in-phase

calculations the maximum fiber stress approaches 1300 MPa while for

the out-of-phase case the fiber is under mild compression throughout. In
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Figure 93. [0/901s SCS6/Ti-0213 Constituent Microstresses in 0° Ply
for In-Phase and Out-of-Phase Loads
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addition, the matrix experiences a much larger stress level in the out-of-

phase solutions than it does for the in-phase load. Therefore, matrix

cracking would most likely be the dominant mode of failure under out-

of-phase loads while fiber cracking would be the dominant mode under

in-phase loads.

The effect of varying the cycle frequency on the in-phase TMF load

described in the previous paragraphs is plotted in Figures 94 and 95. In-

creasing and decreasing the loading rate was found to have a pronounced

effect on the composite response. Although the initial stress-strain re-

sponse during increasing load on the first cycle Is unaffected by varying

the cycle period, once viscoplasticity becomes prevalent at approximate-

ly 280 MPa, the strain accumulation for the longer cycles Increases sig-
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Figure 94. Effect of Cycle Period on the In-Phase TMF Stress-Strain
Response of [0/901s SCS6/Ti-021S
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Figure 95. Effect of Cycle Period on the In-Phase TMF Strain History
of [0/901] SCS6/Ti-021S

nmficantly. For the 36 second cycle, the unloading portion of the curve

also possesses a knee which corresponds to the fiber and matrix in the

900 ply again coming in contact upon unload. In addition, the maximum

and minimum strain histories (Figure 95) show that the effect of varying

the loading rate is still prevalent even after one thousand cycles at

which point the strain accumulation per cycle for all three cases is very

small. For instance, if the number of cycles is greatly increased for the

short cycle time (36 sec) case, then the strain accumulation per cycle on

a logarithmic plot becomes approximately linear as it approaches 50,000

cycles (Figure 96).
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Figure 96. In-Phase TMF Strain History of [10/90]s SCS6ITi-21S to
50,000 Cycles

The effect of a quasi-isotropic composite layup, [0/±45/90]s, as op-

posed to the crossply composite layup already discussed is depicted in

Figures 97 and 98. The same in-phase and out-of-phase loading se-

quences with the 180 sec cycle period were performed for the quasi-iso-

tropic layup as were performed for the crossply laminate. Similar re-

sults were observed in the first cycle behavior for both composites. For

example, the out-of-phase response is essentially linear elastic while the

in-phase load experiences significant plastic deformation in the first

cycle. In addition, the stress-strain response of the quasi-isotropic lami-

nate almost traces that of the crossply over the first cycle for both types

of loading. However, when the maximum and minimum strain history of
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the two laminates for the in-phase cases are compared as in Figure 98, it

is found that the quasi-isotropic laminate experiences a much greater ac-

cumulation of strain over one hundred cycles. The maximum and mini-

mum strain history for the out-of-phase cases are not plotted since they

are basically linear elastic and experience little or no strain accumula-

tion with subsequent cycles.

The effect of employing the interfacial failure model of chapter 6 on

the strain accumulation of a crossply SCS6ITi-15-3 laminate for two in-

phase TMF load profiles is presented in Figures 99 and 100. The solu-

tions from a strong interface and also a weak interface are plotted along-

side for comparison. Figure 99 presents results from an in-phase TMF

cycle whose maximum stress is well above the point at which interfacial
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Figure 99. Effect of Interfacial Failure on the Strain History of [0/9013
SCS6ITi-15-3 - High Stress Range (441 MPa Max.)
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Figure 100. Effect of Interfacial Failure on the Strain History of [0/901,
SCS6/Ti-15-3 - Low Stress Range (180 MPa Max.)

failure begins, and therefore, may be approximated by assuming the in-

terface is weak. In addition, very little viscoplastic strain accumulation

from cycle to cycle is observed for this TMF sequence which possesses a

lower maximum temperature (427 0C) and shorter period (48 sec) than

most of the previous TMF cycles presented in this section. On the other

hand, Figure 100 presents the results of an in-phase TMF cycle charac-

terized by more extensive viscoplastic deformation due to a higher maxi-

mum temperature (650°C) and longer cycle period (180 sec). The max4-

mum stress of this cycle is very close to the point at which interfacial

failure begins to occur in the composite, and therefore, the microme-

chanics solution with the interfacial failure model behaves similarly to
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the strong interface calculations. However, the calculations of Figure

99 for the interfacial failure model were closer to a weak interface. This

indicates that before assuming either a strong or weak interface for a

given composite, the loading environment must also be considered.

7.2.3 Experimental Comparisons and Fatigue Life

Experimental data for crossply and quasi-isotropic layups of the

SCS6/Ti-P21S composite are compared in this section to the computa-

tional results of the micromechanics equations for laminates presented

in section 7. 1. Just as in the previous section, in-phase and out-of-phase

TMF cycles are examined, but in this instance they are compared to ex-

perimental work (67).

Results from an in-phase TMF cycle are presented in Figures 101

and 102. The cycle, consisted of simultaneously increasing both the tem-

perature and applied load to their respective maximum values and then

decreasing them simultaneously back to their minimum values over a

180 sec time interval. This included a change in temperature from

1500C to 6500C and a change in applied stress from 40 MPa to 400 MPa.

The fiber/matrix interface was assumed to be weak normal to its face,

and the temperature preload sequence was the same as employed in the

previous section. The micromechanics demonstrates excellent agree-

ment for the first few cycles of this TMF load. For instance, the calcu-

lations match the stress-strain plot of the first cycle very well, and con-

tinue to capture the slope of the stress-strain curve through the tenth

cycle with only a slight 0.0003 m/m offset in strain which is most likely

due to damage in the actual composite. The results plotted in Figure 102
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Figure 101. [0/901s SCS6/Ti-A2lS Stress-Strain Response to In-Phase
TMF - Comparison to Experiment (67)

also show this trend as the experimental data displays a greater accumu-

lation of strain with increasing cycles. On the other hand, the microme-

chanics results show that the viscoplastic effects die out around 100 cy-

cles causing the calculated strain accumulation to level off.

A comparison with an out-or-phase TMF cycle is presented in Figure

103 for the crossply laminate. The cycle time and change in temperature

were the same as for the in-phase results of Figure 101 and 102, but the

mechanically applied load was cycled between 30 MPa and 300 MPa out-

of-phase with the temperature. Also, just as was observed in all previ-

ous out-of-phase results, the stress-strain response was essentially lin-

ear-elastic. Therefore, the maximum and minimum strain histories over
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Figure 102. [0/901] SCS6Ti-021S Max-Min Strain History for an In-
Phase TMF - Comparison to Experiment (67)

several cycles are not presented since very little strain accumulation oc-

curs. The micromechanics results once again demonstrate excellent

agreement with the experimental data.

In addition to the crossply, experimental results from a quasi-isotro-

pic laminate were also compared to the micromechanics model. Figure

104 presents the composite stress-strain results of the first cycle for an

in-phase TMF load. The cycle time and temperature were the same as

for the crossply, but the applied load was cycled between 26 MPa and

260 MPa. The interface was assumed to be perfectly weak normal to its

face, and three separate micromechanics calculations were made with

each possessing its own unique properties tangential to the interface.
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Figure 103. [0/901] SCS6/Ti-021S Stress-Strain Response to Out-of-
Phase TMF - Comparison to Experiment (67)

These properties effect the laminate behavior for the quasi-isotropic

layup because the 45? plies experience shear longitudinally along the

fiber. First, a strong interface in shear was assumed which translates to

no slip longitudinally between the fiber and matrix, and then a weak in-

terface in shear was assumed which allowed unrestrained slip along the

interface, and lastly, the interfacial failure model of the previous

chapter was employed with the tangential interfacial constants of at " -

100 MPa and u tf/a - 0.01. The results of Figure 104 demonstrate that

the interfacial failure model does an excellent job of capturing the

effects of the experimental response.
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Figure 104. [0/±45/901s SCS6/Ti-021S Stress-Strain Response to In-
Phase TMF - Comparison to Experiment (67)

Additional results are plotted in Figure 105 for the accumulated

strain history of the in-phase TMF on the quasi-isotropic layup. The mi-

cromechanics were performed with the interfacial failure parameters

given in the previous paragraph, and the first few cycles agree quite well

with the experimental data. After this, the experiment displays a greater

accuoul ation of strain with increasing cycles which could be attributed

to damage.

Also, the results from an out-of-phase TMF load for the quasi-isotro-

pic laminate were compared to experiment. Figure 106 presents the first

cycle stress-strain response of the composite where the interfacial fail-
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Figure 105. [0/+45/90]s SCS6rri-021S Max-Min Strain History for an
In-Phase TMF - Comparison to Experiment (67)

ure parameters from the in-phase calculations are once again used. The

out-of-phase results display a material hysteresis in the first cycle

response where the strain begins and ends at approximately the same

point even though the unloading curve does not match the response dur-

ing increasing load. The micromechanics solution indicated that this

hysteresis was due to interfacial failure because very little viscoplastici-

ty was found to occur, yet some interfacial failure did occur in the 450

plies. Therefore, the energy dissipation displayed in the first cycle in

the form of material hysteresis was due to interfacial shear failure. Fur-

ther insight may be gained by examining Figure 107 which indicates
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Figure 106. [0I±4 5/90]s SCS6/T1i-21S Stress-Strain Response to an
Out-of-Phase TMF - Comparison to Experiment (67)

very little viscoplastic strain accumulation through 100 cycles.

It is worthy of note that additional errors between experiment and a

micromechanics solution may result from other than composite damage

in the form of fiber and matrix cracks. For instance, it is very difficult

to achieve an accurate TMF cycle empirically because a sophisticated

control system is required to regulate both the temperature and

mechanical load simultaneously. One of the difficulties that arise from

this is a phase shift between the temperature and mechanical load. Such

a phase shift is normally most prevalent in the first few cycles. Howev-

er, in the micromechanics solution, it is very easy to achieve the exact

204



0.004

I o - 26-260MeP&

0 0 0 0 0004

0 0

00

Mock. 0.002
Striain ~nP~
(mn/i) AT - 1S0-6.50"C

Ao - 26-260 MPs

0.001

o0 0 0oOaO

0

10 100

Cycle

Figure 107. [0/±45/901 SCS6/Ti-021S Max-Min Strain History for an
Out-of-Phase TMF - Comparison to Experiment (67)

cycle desired, so the computational results may depict a load sequence

that was in reality never achieved in the actual composite. In an effort

to evaluate the potential size of this error, two micromechanics solutions

are displayed in Figure 108 for the crossply laminate already discussed

In this section. One solution Is for a perfectly in-phase TMF with a

cycle period of 180 seconds while the other contains a 10 second phase

shift between the temperature and mechanical load where the stress level

led the temperature such that the stress achieved its maximum of 400

MPa when the temperature had only reached 600°C. The results indicate

little effect on the response except at maximum strain where the error in
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strain is approximately 8%. Therefore, errors such as these must be con-

sidered when comparing the micromechanics to experimental data.

Determining the fatigue life or cycles to failure under a given set of

loading conditions is of prime importance for composite applications,

but a tremendous number of experiments would be required to character-

ize the material for all types of load conditions. Therefore, attempts

have been made to consolidate the results so that only a few parameters

need be obtained to predict the fatigue life (77). A model proposed by

Russ et. al. assumes that the failure of the composite is controlled by a

fiber dominated mode and a matrix dominated mode which may be com-
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bined through the following relation (77):

Nf Nm N (186)

where Nf and Nm are the cycles to failure due solely to either the fiber

or matrix, and N is the combined cycles to failure. It is further assumed

that the matrix failure mode is a function of the matrix stress range for

the cycle and the fiber failure mode is a function of the maximum fiber

stress (77, 78). This Linear Life Fraction Model (LLFM) has been fur-

ther modified by Hart and Mall who assumed that Nf and Nm are con-

trolled by the following power law relations:

Nm - B [A " -m I]+ A (187)

Nf - K[(o-ma/s)1-"-I]+A (188)

where A, B, K, and m are constants which must be determined experi-

mentally. a* is the maximum fiber stress at tension failure under static

load at the maximum temperature of the cycle, a 1 a is the maximum

axial stress in the 0" fibers for a given maximum applied stress level,

and AOm is the axial stress range in the matrix.

The fatigue life of quasi-isotropic SCS6ITi- 15-3 laminates under

isothermal, in-phase, and out-of-phase TMF cyclic loading has been ex-
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perimentally characterized by Hart and Mall (78). They also employed

Eqs (186) through (188) in conjunction with a linear micromechanics

analysis using METCAN to predict the fatigue life. However, a linear

analysis will not account for stress relaxation and redistribution within

the constituents due to plasticity. Therefore, the present study will em-

ploy the nonlinear micromechanlcs analysis which has been heretofore

developed and presented in this study to determine the microstresses re-

quired for Eqs (187) and (188) and compare the fatigue life results to the

experiment (78). The microstresses were examined for the tenth and

hundredth cycles of the 420 MPa in-phase TMF load, and it was found

that 80% of the viscoplastic stress relaxation took place within the first

ten cycles. Thereforc. it was assumed that the microstresses employed

for the LLFM fatigue model could be taken from the tenth cycle with a

high degree of confidence that little further stress relaxation would

occur. Also, Table I I presents the constants A, B, K, and m that were

found to best correlate the LLFM fatigue model with the experiment.

Figure 109 displays the LLFM fatigue life predictions using the mi-

crostresses from the nonlinear laminate analysis developed in this study

as compared to the experimental cycles to failure. The loading consisted

of 48 sec cycles at 427°C for the isothermal case and 149-4270C for the

in-phase and out-of-phase TMF cases. In addition, a maximum to mini-

mum applied stress ratio of 0. 1 was used for all cases, and the stress-

free processing temperature was assumed to be 9006C. The results indi-

cate excellent agreement with the experimental data for the loading con-

ditions plotted in the figure.
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Table I I. Constants Employed for the LLFM Predictions of Quasi-Iso-
tropic SCS6/Ti-15-3

A K B m

Isothermal
Nf 400. 1.15e-6 --- 19.7

Nm 2.55e5 --- 1.5e6 0.03

In-Phase
Nf 400. 1.15e-6 --- 17.0

Nm 2.55e5 --- l.5e6 0.03

Out-of-Phase
Nf 1500. 1.15e-6 --- 17.0

Nm 2.55e5 ... 1.5e6 0.03

700]

- LLFM, Isothermal

600 A. 0 Experiment, Isothermal
' -~- -- LLM. In-Phase

1O Experiment. In-Phase
Maximum 500 - "LLFM, Out-of-Phase

Applied 03 * a Experiment, Out-of-Phase
Stress 0
(MPa)

400 N

~0 = 0

300 A _Z - CL

200 1
102 to03 104 105

Cycles to Failure

Figure 109. [0/±45/90]s SCS6/Ti-15-3 Fatigue Life as Predicted by

LLFM and Experiment (78)
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Moreover, the nonlinear micromechanics to laminate analysis pre-

sented in this chapter has displayed excellent agreement with the avail-

able experimental data for various loading conditions. The application

of the model to both monotonic and cyclic thermomechanical loads as

well as its ability to calculate strain accumulation and constituent stress

relaxation due to viscoplastic effects and interfacial failure demonstrates

its versatility. In addition, the accurate determination of ply stresses

and constituent microstresses enables the researcher to pinpoint poten-

tial failure mechanisms and perform fatigue life predictions of the com-

posite.
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VIII. Summary and Conclusions

Composite materials designed for high temperature applications such

as metal-matrix composites (MMCs) display various types of nonlineari-

ties. Temperature dependent properties, plasticity and damage all play a

role in the processing and loading regimes which these composites are

likely to experience. An extensive three-dimensional nonlinear micro-

mechanics model that accounts for all the various types of nonlinearities

and provides the tool to investigate how the composite's behavior is

affected by them is not available. Hence, the research and development

of such a model has been undertaken and presented in the preceding doc-

ument.

To develop this model, a proper foundation of three-dimensional

stress-strain, equilibrium and continuity relationships for an appropriate

representative volume element (RVE) was first established. This foun-

dation was chosen with sufficient complexity to provide for accurate

calculations of the constituent interaction and microstresses while main-

taining enough simplicity to allow for the inclusion of numerous nonlin-

earities and tlhe extension or tile model into a general laminate analysis.

To accomplish this, the RVE is partitioned into separate regions, each of

constant stress, which for the majority of the calculations consisted of a

single fiber region and three matrix regions. Then, the equilibrium of

tractions and continuity of displacements between these regions were

formulated such that all shear stresses decouple from the normal stresses

within the RVE. This provides a computationally efficient means of
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determining the three-dimensional constituent microstresses in and

around the fiber so that various nonlinearities may be easily added.

Figure 110 lays out a tree structure of the micromechanics model with

all the types of nonlinearities that are presently included in this formula-

tion. A brief summary of the model and some of the conclusions gained

by it are presented in this chapter, and more detailed discussions of par-

l3-D Micromechanics/Laminate Aayi

Temperature

Dependent

Elastic-Plastic Properties Fiber/Matrix Inter-
Using 3-D facial Failure
Prandtl-Reuss
Flow Rules Elastic-Viscoplastic

- Using 3-D Bodner- Weak or
Partom Unified Debonded Progressive

Isotropicn C onstitutive Theory Interface Interfacial
Har ig Failure (Sta-

Combined] tistical Ap-
Hardening Isotropic Nrma• [Normalto proach)

Hardening nterface -t

Kinematic INormal to

Hardening Directional nterface
Hardening I Tangent to

Kinematic Interface Tangent to
Hardening Interface
Using Back
Stress

Figure 110. Tree Structure of Nonlinearities in the Micromechanics/Lami-
nate Analysis
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ticular topics which were presented in the preceding chapters are

referred to.

The elastic-plastic analysis employed the Prandtl-Reuss flow rule

along with a Von Mises yield criterion (section 4. 1), and the elastic-vis-

coplastic analysis employed the unified constitutive theory of Bodner

and Partom (section 5. 1). Several versions of these theories which

exploit various types of hardening effects were included for a more ac-

curate representation of the cyclic material behavior. Also, damage at

the fiber/matrix interface was accomplished by assuming either a com-

pletely weak/debonded interface or by using the interfacial failure/dam-

age progression scheme based on a statistical representation of interfa-

cial failure that was developed as a part of this research (sections 6.1

and 6.2). Numerical algorithms for each of these nonlinear phenomena

were developed and were found to possess excellent convergence charac-

teristics.

The analysis was extended into the laminate composite realm by em-

ploying the classical laminated plate theory assumptions. The nonlinear

micromechanics were then formulated through linear transformations of

each ply's stress and strain by its associated ply angle to produce a set

of matrix equations equal to the number of plies. These could then be

assembled into an expanded matrix equation and related to the applied

composite load by invoking equilibrium between the ply stresses and the

applied load (section 7. 1).

The analysis was verified at each step of the development by com-

paring it with either other micromechanics models, finite element analy-

sis, or experiments. The most extensive comparisons were made with
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experimental data because much of the capabilities included in the

present model are unavailable with the other analytical methods. Also,

in addition to monotonic loading, a majority of the results included cy-

clic load-time-temperature profiles to examine the effects of plasticity

and interfacial damage on strain accumulation and constituent stress re-

laxation in titanium based metal matrix composites when subjected to

thermomechanical fatigue (TMF).

Unidirectional linear-elastic comparisons with preexisting microme-

chanics models, finite element analysis, and experiment as presented in

chapter 4 indicate that the present formulation does an excellent job of

predicting a composite's overall properties. Also, comparison of the

constituent microstresses as calculated by 3-D finite element solutions

and the present formulation demonstrated the model's usefulness for ex-

amining the constituent interaction. The confidence gained in the model

by such linear-elastic results were further substantiated with the elastic-

plastic analysis. Experimental results of unidirectional boron/aluminum

were employed to validate the elastic-plastic formulation for various

off-axis loads. The experimental longitudinal and transverse response of

the MMC were closely matched by the present micromechanics model,

and the capability to include either isotropic hardening, kinematic hard-

ening, or a combination of the two was demonstrated (section 4.3).

Additional comparisons using the viscoplastic formulation were ac-

complished by employing three types of Bodner-Partom viscoplastic

theories in the present micromechanics model (section 5.1). Results

from Aboudi's method of cells micromechanics model were employed to

verify the isotropic hardening calculations while finite element solutions
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were used to verify both the back stress and the directional hardening

forms of the Bodner-Partom theory (section 5.3.1). Experimental TMF

results from unidirectional SCS6/Ti- 02 1S were compared with the

micromechanics model to test the strain accumulation features of the

present formulation under a TMF load (section 5.3.2). The microme-

chanics solution agreed very well with its counterpart from experiment

)r the first few cycles, but as might be expected, upon further cyclic

loading, the experiment displays a greater strain accumulation than the

micromechanics since the actual composite experiences damage in the

form of fiber and matrix cracks. This provides a means of separating

out and measuring the effects of viscoplasticity and damage which is im-

possible using an experiment alone. In addition, the ability to calculate

the constituent microstresses after stress relaxation due to viscoplastici-

ty through the first few cycles was demonstrated to identify the sources

of fiber and matrix cracking.

The effects of interfacial debonding were first modeled with an

equivalent compliance at the interface which is zero in compression and

a finite positive value in tension (infinite for perfectly weak). This in-

terfacial model allowed for the analysis of different effects such as the

thermal residual stresses on interfacial debonding (section 5.3). Com-

parisons of this interfacial model with experimental transverse stress-

strain curves indicated that the actual composite possesses a finite inter-

facial failure strength in addition to the effects of residual thermal

stresses. Therefore, an interfacial failure model that applies a progres-

sive failure scheme for the interface was developed (section 6.1). This

interfacial failure model is based on a statistical representation of the
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interfacial stresses in a composite where a Gaussian distribution is as-

sumed, and the fraction of interfaces that have failed are controlled by

the portion of the random distribution that lies above a given failure

strength. Results from this formulation demonstrated excellent agree-

ment with the available experimental data which indicates that it pro-

vides a more reasonable method of modeling the fiber/matrix interface

(section 6.3).

A general purpose micromechanics formulation is not complete with-

out the ability to analyze various laminate composite layups. Therefore,

the present formulation was extended to the laminate analysis and exten-

sive comparisons were made with other numerical methods and experi-

ments. Results from Aboudi's method of cells and some limited finite

element data of a crossply laminate were also used to compare with the

present model which showed an excellent agreement (section 7.2. 1).

This as well as the extensive experimental comparisons assured the va-

lidity of the present micromechanics to laminate analysis formulation

(section 7.2.3). Additionally, a parametric study on the effects of vari-

ous conditions such as loading rate, ply layup, interfacial strength, and

type of loading was presented to demonstrate the effectiveness of the

model as a supplement and in some instances a substitute for experimen-

tal work where it may be cost prohibitive to perform an extensive num-

ber of experiments at all the various conditions (section 7.2.2). Also, in

order to accurately predict the life of a composite, the constituent mi-

crostresses must be reliably determined, but the effects of nonlinearities

such as viscoplasticity and interfacial failure which can occur very early

in the cyclic loading sequence may contribute to a redistribution of the
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constituent ,tresses. Hence, a micromechanics formulation such as the

present one which accounts for such nonlinearities through a three-di-

mensional stress formulation would provide such information as the con-

stituent microstresses with accuracy. An example of the use of the

present model in this regard was given in the last chapter.

Many aerospace applications of composite materials involve ex-

tremely high temperatures (i.e. engine components, NASP, etc.), and the

titanium-based MMCs targeted for such applications exhibit the various

nonlinearities previously discussed. Therefore, the present microme-

chanics formulation provides an excellent tool for analyzing these types

of composites as it has been confirmed throughout this study. On the

other hand, it is also capable of analyzing any type of continuously fiber

reinforced composite, and it possesses a formulation that has been

shown to allow for the inclusion of many material nonlinearities.

A reliable micromechanics analysis can provide both the design and

laboratory engineer with an invaluable tool for selecting classes of com-

posites by predicting their response when subjected to different tempera-

tures and loading regimes, ranging from monotonic loading to thermal-

mechanical cycling. Also, a better understanding of the observed exper-

imental behavior of a these composites are often required. The present

formulation was developed to provide such a tool, and its accuracy and

potential for these applications was established in this study.

In addition, consideration should be given in future investigations

for further application of the present formulation to model additional

nonlinearities. For instance, damage of unidirectional composites in the

form of fiber and matrix cracks is a very prevalent phenomena, and ex-
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panding the model to include this would be of great benefit. Also, the

effects of such types of damage on various laminated composite layups

and how ply orientation may effect the acceleration this damage would

be additionally worthwhile.
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Appendix: Eight-Region Model Equations

The determination of the region dimensions and the equilibrium and

continuity relations employed for the unidirectional micromechanics

eight-region model are presented here. Results from the eight-region

model are presented in chapter 4.

Figure I I displays the region configuration and labeling which will

be used throughout the Appendix, and when it is compared with the

four-region model, the number of matrix regions for the eight-region

model have been increased from three to seven while the number of in-

T
c m7  M6

m4

b 16 1 5
1 m5

13 m3  m2

a f 12 T
a T

IiI

Figure 111. Region Configuration and Labeling for the Eight-Region

Micromechanics Model
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terfaces have been increased from two to six. The dimensions of the

fiber region are chosen such that the overall shape will most closely

match that of a quarter-circle. Figure 112 compares the fiber region of

the micromechanics to a circular fiber, and it is recognized that the area

traced out by each must be the same. Hence,

2be + a2 - Zr2 (189)4

The most optimum dimensions for the prismatic fiber region are

those that will minimize the shaded area depicted in Figure 112. There-

fore, if a general representation of this shaded area is obtained then the

most optimum dimensions may be obtained through elementary calculus.

b

a T

Figure 112. Fiber Region Dimensions
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The shaded area may be represented by

As-2 d- us fr 2 -x 2 dx + r2 -x 2 dx

.2ar a/r2 + ae + + r 2 " 2 _2x2 dx] (190)
2 2 J'r1-a 2r2]

where A. is the shaded area in Figure 112. Therefore, the two additional

equations which must be satisfied to optimize the fiber region dimen-

sions are

A .o (191)0 a

A .0 
(192)a e

The solution to Eqs (184) through (187) is

a - 0.7862 r (193)

b - 0.1860 r (194)

e = 0.4499 r (195)

and the dimension r is simply the fiber radius. The other dimensions in
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Figure I I I are determined from the fiber volume fraction of the compos-

ite and the fiber spacing aspect ratio.

The analysis cell dimensions are now used in the following pages

where the equilibrium and continuity equations that were employed for

the eight-region micromechanics model are listed. The method of solu-

tion of these equations is the same as for the four-region model outlined

in chapter 3.

Equilibrium:

(a2 + 2be) allf+ d e allml + d(a-e) u11m2 + b (a'e) 0l63 + (b+c) (b+d) GI° (196)

+ b (a-e) Olis + c (a-e) 1llm6 + c c allm7 - (a+b+c) (a+b+d) (y,

e a22m1 + (a-e) a,727 + b 0F22• - (a+b) o22f (197)

022m, - 'Iml, (198)

a22m3 - 0"22M2 (199)

22 - (200)

bY22m + c a2 -1b ) o22T (201)

022m5 - 0• N(202)

G22m6 ý 022m 7  (203)

222



(b+c) a2m + (a-c) a22m + e o22ml (a+b+c) 0-22 (204)

e 3m + (a-c) 033m5 + b 033m3 - (a+b) a133f (205)

0 3ýM7 = (J'2 (206)

033½6 - (13s(207)

q33ja 0%1 (208)

b C33m + d 332- (b+d),u33m (209)

1T33ma, (210)

193M 5-3m (211)

(b+d) a33m4 + (a-c) a 33m6 + e C m (a+b+d) -a33  (212)

e T2,+ (a-) T12M2 + (b+c) T12M4 - (a+b+c) --r2 (213)

(a+b) T12, +C T 1 -;7 (a+b+C) T12  (214)

b (a-e) Tt,3+ e Tq- (a+b) T12 (215)

br T%+C4 27 1M CT 26

(a-c3 + b T 1 2S+ CT12M6 ("-) T123+ (b+c) T12 ,D4 (217)
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e Tlý,+ (a-c) TI3. 6 + (b+d) T_,-(a+b+d) T1 3  (218)

(a+b) T1 3, + d T3I-(a~b+d) T13  (2 19)

bTq+ (a-e) T+ e T - (a+b) T13, (220)

bN2+ dlj - bI4M dm (221)

Ta)+ b T13M+ d Tj~- (a-e) T13M+ (b+,d) T 1~m (222)

TZrT23mi I = 232T 2 3 I M3 = -nM m 2- 2 6=T3, 2 (223)

Continuity:

E11f - F11M1  - ell -~~m 1104 - E1l~ - 6 £1m - n1m7 ý En (224,%

(a+b) e2f+ 8*1 + 2= (a+b+d) en (225)

(a-e) e22f + + b c22m3+ d e22 2  8hns (a-e) enm5+ (b+,d)~~ (227

e E2,+ 8.ý + (a-e) E22m5 = e22nm7 + (a-c) c22. 6  (228)

(a+b) e3-1, + 'k c e33m -7 (a+b+c) F-33 (229)
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b E33ý+ 8% + C E33m= b14 + b E33s+ c E33,,, (230)

(a-c) E33 + 5%+ b E33m5 + c e =n1 -8, + (a-c) -33nm3 + bc 33m (231)

e 93 2 +(ace) 3m- e E33m + (")E33 2  (232)

(b+d) ym + (are) y 12., y. - (a+b+d) 712 (233)

712 =Y12m (234)

e l2m1 e yW4+ (235)

Y12 M3 Y12 M4 (237)

Y12 2 = ý04(238)

N3 b yl~3+ d yj2m b y1f+ %I + d yl~ (239)

(b+c) Yi;.4 + (a-e) 132+ e Y3,- (a+b+c) Y13 (240)

IY,3n Y1f+% (242)

225



e yl~ +(a-e) y,3.. a y1_3+ (243)

lvltý Ytj3it (244)

?L3. 1336It31 (245)

\+ b Y13m +C Y13m b y14 +\ C 13m7 (246)

(2be+a2) ytf+ de v,~n + d4ae 2m b (a-e) t,3+ (b+d) (b+c)?23 .4 (247)

+ b (a-c) I. + c (a-c) Y23m6~ + cer3m (a+b+c-) (a~b+d) Y23
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